LEADER 06193nam 2200589 450 001 9910555140803321 005 20221206100807.0 010 $a1-119-44192-7 010 $a1-119-44186-2 010 $a1-119-44190-0 024 7 $a10.1002/9781119441908 035 $a(CKB)4100000010870889 035 $a(MiAaPQ)EBC6195887 035 $a(CaBNVSL)mat09107330 035 $a(IDAMS)0b0000648cb834a7 035 $a(IEEE)9107330 035 $a(EXLCZ)994100000010870889 100 $a20200729d2020 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aWhole-angle MEMs gyroscopes$b[electronic resource] $echallenges and opportunities /$fDoruk Senkal, Andrei M. Shkel 205 $aFirst edition. 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc. ;$aPiscataway, NJ :$cIEEE Press,$d[2020] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2020] 215 $a1 online resource (171 pages) 225 1 $aIEEE Press series on sensors 311 $a1-119-44188-9 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Abbreviations -- Preface -- About the Authors -- Part I Fundamentals of Whole-Angle Gyroscopes -- Chapter 1 Introduction -- 1.1 Types of Coriolis Vibratory Gyroscopes -- 1.1.1 Nondegenerate Mode Gyroscopes -- 1.1.2 Degenerate Mode Gyroscopes -- 1.2 Generalized CVG Errors -- 1.2.1 Scale Factor Errors -- 1.2.2 Bias Errors -- 1.2.3 Noise Processes -- 1.2.3.1 Allan Variance -- 1.3 Overview -- Chapter 2 Dynamics -- 2.1 Introduction to Whole-Angle Gyroscopes -- 2.2 Foucault Pendulum Analogy -- 2.2.1 Damping and Q-factor 327 $a2.2.1.1 Viscous Damping -- 2.2.1.2 Anchor Losses -- 2.2.1.3 Material Losses -- 2.2.1.4 Surface Losses -- 2.2.1.5 Mode Coupling Losses -- 2.2.1.6 Additional Dissipation Mechanisms -- 2.2.2 Principal Axes of Elasticity and Damping -- 2.3 Canonical Variables -- 2.4 Effect of Structural Imperfections -- 2.5 Challenges of Whole-Angle Gyroscopes -- Chapter 3 Control Strategies -- 3.1 Quadrature and Coriolis Duality -- 3.2 Rate Gyroscope Mechanization -- 3.2.1 Open-loop Mechanization -- 3.2.1.1 Drive Mode Oscillator -- 3.2.1.2 Amplitude Gain Control -- 3.2.1.3 Phase Locked Loop/Demodulation 327 $a3.2.1.4 Quadrature Cancellation -- 3.2.2 Force-to-rebalance Mechanization -- 3.2.2.1 Force-to-rebalance Loop -- 3.2.2.2 Quadrature Null Loop -- 3.3 Whole-Angle Mechanization -- 3.3.1 Control System Overview -- 3.3.2 Amplitude Gain Control -- 3.3.2.1 Vector Drive -- 3.3.2.2 Parametric Drive -- 3.3.3 Quadrature Null Loop -- 3.3.3.1 AC Quadrature Null -- 3.3.3.2 DC Quadrature Null -- 3.3.4 Force-to-rebalance and Virtual Carouseling -- 3.4 Conclusions -- Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures -- Chapter 4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes 327 $a4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures -- 4.1.1 Lumped Mass Systems -- 4.1.2 Ring/Disk Systems -- 4.1.2.1 Ring Gyroscopes -- 4.1.2.2 Concentric Ring Systems -- 4.1.2.3 Disk Gyroscopes -- 4.2 2-D Micro-Machining Processes -- 4.2.1 Traditional Silicon MEMS Process -- 4.2.2 Integrated MEMS/CMOS Fabrication Process -- 4.2.3 Epitaxial Silicon Encapsulation Process -- Chapter 5 Example 2-D Micro-Machined Whole-Angle Gyroscopes -- 5.1 A Distributed Mass MEMS Gyroscope -- Toroidal Ring Gyroscope -- 5.1.1 Architecture -- 5.1.1.1 Electrode Architecture 327 $a5.1.2 Experimental Demonstration of the Concept -- 5.1.2.1 Fabrication -- 5.1.2.2 Experimental Setup -- 5.1.2.3 Mechanical Characterization -- 5.1.2.4 Rate Gyroscope Operation -- 5.1.2.5 Comparison of Vector Drive and Parametric Drive -- 5.2 A Lumped Mass MEMS Gyroscope -- Dual Foucault Pendulum Gyroscope -- 5.2.1 Architecture -- 5.2.1.1 Electrode Architecture -- 5.2.2 Experimental Demonstration of the Concept -- 5.2.2.1 Fabrication -- 5.2.2.2 Experimental Setup -- 5.2.2.3 Mechanical Characterization -- 5.2.2.4 Rate Gyroscope Operation -- 5.2.2.5 Parameter Identification 330 $a"Coriolis Vibratory Gyroscopes (CVGs) can be divided into two broad categories based on the gyroscope's mechanical element: (Type 1) degenerate mode gyroscopes, which have x-y symmetry, and (Type 2) non-degenerate mode gyroscopes, which are designed intentionally to be asymmetric in x and y modes. Currently, non-degenerate mode gyroscopes fulfill the needs of a variety of commercial applications, such as tilt detection, activity tracking, and gaming. However, when it comes to inertial navigation, where sensitivity and stability of the sensors are very important, commercially available MEMS sensors fall short by three orders of magnitude. Degenerate mode gyroscopes on the other hand, have a number of unique advantages compared to non-degenerate vibratory rate gyroscopes, including higher rate sensitivity, ability to implement whole-angle mechanization with mechanically unlimited dynamic range, exceptional scale factor stability, and a potential for self-calibration. For this reason, as the MEMS gyroscope development is reaching maturity, the Research and Development focus is shifting from high-volume production of low-cost non-degenerate mode gyroscopes to high performance degenerate mode gyroscopes. This paradigm shift in MEMS gyroscope research and development creates a need for a reference book to serve both as a guide and an entry point to the world of degenerate mode gyroscopes"--$cProvided by publisher. 410 0$aIEEE Press series on sensors 606 $aAdaptive control systems$xMathematical models 606 $aMicroelectromechanical systems$xDesign and construction 615 0$aAdaptive control systems$xMathematical models. 615 0$aMicroelectromechanical systems$xDesign and construction. 676 $a629.836 700 $aSenkal$b Doruk$f1984-$01217432 702 $aShkel$b Andrei 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910555140803321 996 $aWhole-angle MEMs gyroscopes$92815544 997 $aUNINA