LEADER 08775nam 2200517 450 001 9910555059803321 005 20220619000128.0 010 $a1-119-47324-1 010 $a1-119-47320-9 010 $a1-119-47329-2 035 $a(CKB)4100000012026907 035 $a(MiAaPQ)EBC6727682 035 $a(Au-PeEL)EBL6727682 035 $a(OCoLC)1272998718 035 $a(EXLCZ)994100000012026907 100 $a20220619d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aMagma redox geochemistry /$fRoberto Moretti, Daniel R. Neuville, editors 210 1$aHoboken, New Jersey :$cAmerican Geophysical Union :$cWiley,$d[2022] 210 4$d©2022 215 $a1 online resource (429 pages) 225 1 $aGeophysical monograph series 300 $aIncludes index. 311 $a1-119-47325-X 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Redox Equilibria: From Basic Concepts to the Magmatic Realm -- 1.1 General Aspects and Rationale -- 1.2 Oxygen Fugacity: The Centrality of an Elusive Parameter -- 1.3 Concluding Remarks and Perspectives -- Acknowledgments -- References -- Part I Redox from the Earth's Accretion to Global Geodynamics -- Chapter 2 Redox Processes Before, During, and After Earth´s Accretion Affecting the Deep Carbon Cycle -- 2.1 The Redox State of Planetary Interiors and the Speciation of Carbon in the Earth -- 2.2 Oxidation State of Earth´s Building Blocks and Early Differentiation -- 2.3 Mantle Oxidation State Over Time and Its Effect on the C-O-H Volatile Speciation -- 2.4 The Mantle Great Oxidation Event: Fact or Artefact? -- Acknowledgments -- References -- Chapter 3 Oxygen Fugacity Across Tectonic Settings -- 3.1 Introduction -- 3.2 Sample Selection, Methodology, and Design of this Study -- 3.3 Results -- 3.4 Discussion -- 3.5 Conclusions and Future Directions -- Acknowledgments -- Oxygen Fugacity Calculations -- References -- Chapter 4 Redox Variables and Mechanisms in Subduction Magmatism and Volcanism -- 4.1 Introduction -- 4.2 Redox Variables -- 4.3 Mechanisms -- 4.4 Discussion -- Acknowledgments -- References -- Chapter 5 Redox Melting in the Mantle -- 5.1 Introduction -- 5.2 Mantle Melting with Volatile Components -- 5.3 Redox Melting -- 5.4 Compositions of Melts Formed by Redox Melting -- 5.5 The Oxidation State in the Mantle Lithosphere, Asthenosphere, and Subduction Zones -- 5.6 Discussion -- 5.7 Closing Comments -- Acknowledgments -- References -- Part II Redox at Work: From Magma Sources to Volcanic Phenomena -- Chapter 6 Ionic Syntax and Equilibrium Approach to Redox Exchanges in Melts: Basic Concepts and the Case of Iron and Sulfur in Degassing Magmas. 327 $a6.1 Introduction -- 6.2 Ionic Syntax, Speciation State and the Melt/Glass Network: State of the Art and Conceptual Framework -- 6.3 Redox Evolution and Magmatic Degassing -- 6.4 Discussion -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7 The Petrological Consequences of the Estimated Oxidation State of Primitive MORB Glass -- 7.1 Introduction -- 7.2 Modeling Methods and Sample Selection -- 7.3 Results -- 7.4 Summary and Prospects -- Acknowledgments -- References -- Chapter 8 Oxygen Content, Oxygen Fugacity, the Oxidation State of Iron, and Mid-Ocean Ridge Basalts -- 8.1 Oxygen Content, Oxygen Fugacity, and the Oxidation State of Iron -- 8.2 Mid-Ocean Ridge Basalts -- Acknowledgments -- References -- Chapter 9 Chromium Redox Systematics in Basaltic Liquids and Olivine -- 9.1 Introduction -- 9.2 Measuring Cr Valence in Geologic Materials with Cr-K edge XANES Spectroscopy -- 9.3 Cr-Redox Systematics in Silicate Liquids: What We Know and Don´t Know -- 9.4 Cr-Valence Systematics in Equilibrium Liquid-Olivine Pairs -- 9.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 10 The Thermodynamic Controls on Sulfide Saturation in Silicate Melts with Application to Ocean Floor Basalts -- 10.1 Introduction -- 10.2 Sulfide Capacity -- 10.3 The Thermodynamic Meaning of the Sulfide Capacity -- 10.4 A New Parameterization of Sulfide Capacity for Basaltic Melts -- 10.5 Sulfide Content at Sulfide Saturation (SCSS) -- 10.6 Application to Mid-Ocean Ridge and Similar Basalts -- 10.7 The Sulfur Fugacity (fS2) of Ocean Floor Basalts -- 10.8 Conclusions -- Acknowledgments -- References -- Chapter 11 Redox State of Volatiles and Their Relationships with Iron in Silicate Melts -- 11.1 Introduction -- 11.2 Water Concentration in Melt and its Effect on Redox -- 11.3 The Sulfur Species and the Redox (Fe3+/SigmaFe Ratio) of Silicate Melts. 327 $a11.4 Natural Systems: Magma Degassing and Redox -- 11.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 12 Iron in Silicate Glasses and Melts -- 12.1 Introduction -- 12.2 Iron Distribution in the Different Terrestrial Envelopes -- 12.3 Redox Equilibrium in Melts -- 12.4 Physical Properties: Highlights on Density and Viscosity -- 12.5 Influences on Crystallization and Degassing in Magmatic Systems -- 12.6 Concluding Remarks -- Acknowledgments -- References -- Part III Tools and Techniques to Characterize the Redox and its Effect on Isotope Partitioning -- Chapter 13 How to Measure the Oxidation State of Multivalent Elements in Minerals, Glasses, and Melts? -- 13.1 Introduction -- 13.2 Wet-Chemical Analyses -- 13.3 Electronic Microprobe -- 13.4 Mössbauer Spectroscopy -- 13.5 Optical Absorption Spectroscopy -- 13.6 X-ray Absorption Spectroscopy -- 13.7 Raman Spectroscopy -- 13.8 In situ Redox Determination at High Temperature or at High Pressure -- 13.9 Conclusion -- Acknowledgments -- References -- Chapter 14 Oxidation State, Coordination, and Covalency Controls on Iron Isotopic Fractionation in Earth´s Mantle and Crust -- 14.1 Introduction -- 14.2 Theory: Equilibrium Isotopic Fractionation from Vibrational Properties -- 14.3 Calculation of Vibrational Properties -- 14.4 Iron Isotope Studies Based on NRIXS or DFT -- 14.5 Comparison of Equilibrium Fractionation Factors Derived from Various Techniques -- 14.6 Parameters Controlling Equilibrium Fractionation Factors -- 14.7 Selected Applications to the Interpretation of Iron Isotopic Variations in Igneous Rocks -- 14.8 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 15 The Role of Redox Processes in Determining the Iron Isotope Compositions of Minerals, Melts, and Fluids -- 15.1 Introduction -- 15.2 Principles and Nomenclature. 327 $a15.3 Methods for the Calibration of Iron Isotope Fractionation Factors -- 15.4 Fundamental Controls on Isotopic Fractionation Between Minerals, Melts, and Fluids -- 15.5 Effect of Redox Processes in Influencing Iron Isotope Fractionation in Natural Systems -- 15.6 Conclusion -- Acknowledgments -- References -- Chapter 16 Zinc and Copper Isotopes as Tracers of Redox Processes -- 16.1 Introduction -- 16.2 The Determination of Cu and Zn Isotope Ratios -- 16.3 Theoretical and Experimental Constraints on Cu and Zn Isotope Behavior in Relation to Redox Processes -- 16.4 Application of Cu and Zn to Trace Redox Processes in Natural Systems -- 16.5 Summary and Conclusions -- Acknowledgments -- References -- Chapter 17 Mineral-Melt Partitioning of Redox-Sensitive Elements -- 17.1 Introduction -- 17.2 Theoretical Background -- 17.3 Transition Metals (Fe, Cr, Ti, V) -- 17.4 Rare Earths (Ce, Eu) -- 17.5 Uranium (U) -- 17.6 Siderophile Elements (MO, W, Re, Pt GROUP ELEMENTS) -- 17.7 Concluding Remarks -- Acknowledgments -- References -- Chapter 18 Titanomagnetite - Silicate Melt Oxybarometry -- 18.1 Introduction -- 18.2 Oxybarometers Related to Titanomagnetite -- 18.3 Oxybarometers Based on Mineral Equilibria Involving Titanomagnetite -- 18.4 Oxybarometers Based on Element Partitioning Between Titanomagnetite and Silicate Melt -- 18.5 Application of Titanomagnetite-Based Oxybarometers to Natural Silicic Rocks -- 18.6 Conclusions -- Acknowledgments -- References -- Supplementary references -- Chapter 19 The Redox Behavior of Rare Earth Elements -- 19.1 Introduction -- 19.2 Geochemistry of Rare Earth Elements -- 19.3 Multivalent Rare Earth Elements -- 19.4 Conclusions and Perspectives -- Acknowledgments -- References -- Index -- EULA. 410 0$aGeophysical monograph series. 606 $aOxidation-reduction reaction 608 $aElectronic books. 615 0$aOxidation-reduction reaction. 676 $a541.393 702 $aMoretti$b Roberto 702 $aNeuville$b Daniel R. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555059803321 996 $aMagma redox geochemistry$92878389 997 $aUNINA