LEADER 11038nam 2200541 450 001 9910555046403321 005 20220317133705.0 010 $a1-119-16311-0 010 $a1-119-16310-2 010 $a1-119-16309-9 035 $a(CKB)4330000000009001 035 $a(MiAaPQ)EBC6647282 035 $a(Au-PeEL)EBL6647282 035 $a(OCoLC)1259593254 035 $a(EXLCZ)994330000000009001 100 $a20220317d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aApplied multidimensional geological modeling $einforming sustainable human interactions with the shallow subsurface /$fedited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen 210 1$aHoboken, NJ :$cJohn Wiley & Sons, Inc.,$d[2021] 210 4$d©2021 215 $a1 online resource (675 pages) 311 $a1-119-16312-9 327 $aCover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acknowledgments -- Part I Introduction and Background -- Chapter 1 Introduction to Modeling Terminology and Concepts -- 1.1 Mapping or Modeling - Which Is Correct? -- 1.1.1 Definition of the Term "Model" -- 1.1.2 Evolution of the Geological Model Concept -- 1.2 Why Use "Multidimensional"? -- 1.3 Evolution of Digital Geological Modeling -- 1.4 Overview of the Book -- 1.4.1 Intended Audience -- 1.4.2 Part I: Introduction and Background -- 1.4.3 Part II: Building and Managing Models -- 1.4.3.1 Technical Considerations - Chapters 5-8 -- 1.4.3.2 Alternative Model Building Approaches - Chapters 9-12 -- 1.4.3.3 Model Application and Evaluation - Chapters 13-15 -- 1.4.4 Part III: Using and Disseminating Models -- 1.4.5 Part IV: Case Studies -- 1.4.6 Part V: Future Possibilities and Challenges -- References -- Chapter 2 Geological Survey Data and the Move from 2-D to 4-D -- 2.1 Introduction -- 2.2 The Role of Geological Survey Organizations -- 2.2.1 Establishment of Geological Surveys -- 2.2.2 Systematic versus Strategic Mapping Approaches -- 2.2.3 Geological Mapping by Geological Surveys -- 2.2.4 Difficulty in Maintaining Adequate Financial Support -- 2.3 Challenges Facing Geological Survey Organizations -- 2.4 A Geological Map is Not a Piece of Paper -- 2.4.1 Early Geological Maps -- 2.4.2 Early Digital Mapping and Modeling -- 2.4.3 Advantages of Digital Mapping -- 2.5 The Importance of Effective Data Management -- 2.6 The Challenges of Parameterization - Putting Numbers on the Geology -- 2.6.1 Parameterization of Geological Models -- 2.6.2 Model Scale -- 2.6.3 Parameter Heterogeneity -- 2.6.4 Model Uncertainty -- 2.7 Use of 3?D Geological Models with Process Models -- 2.8 The Evolving Mission of the Geological Survey of the Netherlands. 327 $a2.9 Experience With a Multiagency and Multijurisdictional Approach to 3?D Mapping in the Great Lakes Region -- 2.10 Conclusions -- References -- Chapter 3 Legislation, Regulation, and Management -- 3.1 Introduction -- 3.2 Layers of the Subsurface -- 3.3 Legal Systems -- 3.4 Land Ownership -- 3.5 Regulation and Management -- 3.5.1 Ground Investigation -- 3.5.2 Spatial Planning -- 3.5.3 Natural Resources -- 3.5.4 Environmental and Cultural Issues -- 3.6 Approaches to Subsurface Development -- 3.6.1 Existing Spaces -- 3.6.2 New Developments -- 3.7 Involving Stakeholders -- 3.8 Delivery of Information -- 3.9 The Role of 3?D Subsurface Models -- 3.10 Conclusions -- References -- Chapter 4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models -- 4.1 Introduction -- 4.2 The Nature of Geotechnical Investigations -- 4.2.1 Geotechnical Investigations for Management of Geotechnical Risk -- 4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process -- 4.2.3 Potential Impact of Geotechnical Risks -- 4.3 Benefits of Using 3?D Models and Establishing Subsurface Ground Conditions -- 4.3.1 Cost of Geotechnical Investigations -- 4.3.2 Geotechnical Baseline Report -- 4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk -- 4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information -- 4.4.2 Investments to Mitigate Against Deficient Ground Information -- 4.4.3 Code Requirements -- 4.5 Examples of the Use of 3?D Geological Models for Infrastructure Projects -- 4.5.1 Investigating Three?Dimensional Geological Modeling as a Tool for Consultancy -- 4.5.2 Three?Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value. 327 $a4.5.3 Integrating 3?D Models Within Project Workflow to Control Geotechnical Risk -- 4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom -- 4.5.5 Employing an Integrated 3?D Geological Model for the Reference Design of the Silvertown Tunnel, East London -- 4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning -- Acknowledgments -- References -- Part II Building and Managing Models -- Chapter 5 Overview and History of 3?D Modeling Approaches -- 5.1 Introduction -- 5.2 Historical Development of 3?D Modeling -- 5.2.1 Representation of the Third Dimension -- 5.2.2 Electrical Analog Models -- 5.2.3 The Adoption of Digital Mapping Technologies -- 5.2.4 Evolution of 3?D Mapping and Modeling Collaborative Forums -- 5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling -- 5.3.1 Early Modeling Efforts -- 5.3.2 Initial 3?D Geological and Hydrogeological Evaluations -- 5.3.3 Recent Geological and Hydrogeological Models -- 5.4 Digital 3?D Geological Modeling Approaches Discussed in This Book -- 5.4.1 Stacked?Surface Approach to Model Creation -- 5.4.2 Modeling Based on Cross?Sections and Boreholes -- 5.4.3 Three?Dimensional Gridded Voxel Models -- 5.4.4 Integrated Rule?Based (Implicit) Geological Models -- References -- Chapter 6 Effective and Efficient Workflows -- 6.1 Introduction -- 6.1.1 Understanding the Geologic Modeling Process -- 6.1.2 Developing Custom Workflows -- 6.2 Operational Considerations -- 6.2.1 User Requirements -- 6.2.2 Defining Mapping Objectives -- 6.2.2.1 Delineation of Model Domain -- 6.2.2.2 Definition of the General Geologic Framework Model -- 6.2.2.3 Determination and Representation of the Desired Model Accuracy -- 6.2.2.4 Consideration of Formats for Final Deliverables -- 6.2.3 Geologic Setting and Natural Complexity. 327 $a6.2.4 Existing Data Availability and Management -- 6.2.5 Collection of New Data -- 6.2.6 Staff Availability and Expertise -- 6.3 Selection of Modeling Methods and Software -- 6.4 Products and Distribution -- 6.5 Model Maintenance and Upgrades -- 6.6 Illinois State Geological Survey 3?D Modeling Workflows -- 6.6.1 Project Objectives -- 6.6.2 Project Schedule -- 6.6.3 Project Staffing Considerations -- 6.6.4 Software Selection -- 6.6.5 Data Assessment -- 6.6.6 Project Deliverables -- 6.6.7 Post?Project Model Management -- 6.7 Modeling Workflow Solutions by Other Organizations -- 6.7.1 University of Waterloo, Department of Earth and Environmental Sciences -- 6.7.2 Delaware Geological Survey -- 6.7.3 Ontario Geological Survey -- 6.7.4 Geological Survey of Denmark and Greenland -- 6.8 Creating a Custom Workflow -- Acknowledgments -- References -- Chapter 7 Data Sources for Building Geological Models -- 7.1 Introduction -- 7.2 Defining and Classifying Data -- 7.2.1 Data Versus Information -- 7.2.2 Classifying Data -- 7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons -- 7.2.2.2 Framework Versus Property Data -- 7.2.2.3 Elevation, Surficial, and Subsurface Data -- 7.3 Legacy Data -- 7.4 Elevation Data -- 7.5 Surficial and Subsurface Geological Data -- 7.5.1 Geological Survey Data -- 7.5.1.1 Map Data -- 7.5.1.2 Boreholes -- 7.5.1.3 Analytical Databases -- 7.5.1.4 Reports and Academic Contributions -- 7.5.1.5 3?D Models -- 7.5.1.6 Accessibility -- 7.5.2 Soil Data -- 7.5.3 Geotechnical Data -- 7.5.4 Water Well Data -- 7.5.5 Petroleum Data -- 7.6 Geophysical Data -- 7.6.1 Seismic Survey Method -- 7.6.1.1 Seismic Refraction Surveys -- 7.6.1.2 Seismic Reflection Surveys -- 7.6.1.3 Surface Wave Surveys -- 7.6.2 Resistivity Survey Method -- 7.6.3 Electromagnetic Survey Method -- 7.6.3.1 Time Domain Electromagnetic Surveys (TDEM). 327 $a7.6.3.2 Frequency Domain Electromagnetic Surveys -- 7.6.3.3 Airborne Electromagnetic Surveys -- 7.6.4 Gravity Surveys -- 7.6.4.1 Ground?based Gravity Surveys -- 7.6.4.2 Airborne Gravity Surveys -- 7.6.5 Ground Penetrating Radar -- 7.6.6 Borehole Geophysics -- 7.6.6.1 Borehole Geophysical Logging -- 7.6.6.2 In?hole Seismic Geophysical Logging -- Acknowledgments -- References -- Chapter 8 Data Management Considerations -- 8.1 Introduction -- 8.2 Data Management Methods -- 8.2.1 Standards and Best Practice -- 8.2.2 The Database System -- 8.2.3 Data Modeling -- 8.2.4 Relational Databases -- 8.2.5 Entity?Relationship Diagrams -- 8.2.6 Normalization Process -- 8.2.7 Denormalization Process -- 8.2.8 Extract, Transform, Load (ETL) Processes -- 8.2.9 Data Warehousing -- 8.2.10 The Important Role of Metadata -- 8.3 Managing Source Data for Modeling -- 8.3.1 Data from Multiple Data Sources -- 8.3.2 Managing the Connectivity among Data Sources -- 8.3.3 Facilitating Sharing of Database Designs -- 8.4 Managing Geological Framework Models -- 8.4.1 BGS Model Database Design Principles -- 8.4.2 Versioning Existing Models -- 8.4.3 Creating New Models Based on Existing Models - "Model Interoperability" -- 8.5 Managing Geological Properties Data and Property Models -- 8.5.1 Characteristics of Property Data Sources and Models -- 8.5.2 Applications within the British Geological Survey -- 8.6 Managing Process Models -- 8.7 Integrated Data Management in the Danish National Groundwater Mapping Program -- 8.8 Transboundary Modeling -- 8.8.1 The H3O Program: Toward Consistency of 3?D Hydrogeological Models Across the Dutch?Belgian and Dutch?German Borders -- 8.8.2 The Polish-German TransGeoTherm Project -- 8.8.3 The GeoMol Project -- Acknowledgments -- References -- Chapter 9 Model Creation Using Stacked Surfaces -- 9.1 Introduction -- 9.2 Rationale for Using Stacked Surfaces. 327 $a9.3 Software Functionality to Support Stacked?Surface Modeling. 606 $aGeological modeling$xSimulation methods 606 $aGeological surveys$xSimulation methods 608 $aElectronic books. 615 0$aGeological modeling$xSimulation methods. 615 0$aGeological surveys$xSimulation methods. 676 $a550.113 702 $aTurner$b A. Keith$f1941- 702 $aKessler$b Holger$f1971- 702 $aMeulen$b Michiel J. van der 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555046403321 996 $aApplied multidimensional geological modeling$92816805 997 $aUNINA LEADER 03732oam 2200493 450 001 9910739470603321 005 20190911103511.0 010 $a1-4471-4984-X 024 7 $a10.1007/978-1-4471-4984-2 035 $a(OCoLC)849950196 035 $a(MiFhGG)GVRL6VQZ 035 $a(EXLCZ)992560000000103244 100 $a20140401d2013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 00$aEmotional engineering$hVol. 2 /$fShuichi Fukuda, editor 205 $a1st ed. 2013. 210 1$aLondon :$cSpringer,$d2013. 215 $a1 online resource (viii, 242 pages) $cillustrations (some color) 225 0 $aSpringer Electronic Books--Engineering 300 $aDescription based upon print version of record. 311 $a1-4471-6128-9 311 $a1-4471-4983-1 320 $aIncludes bibliographical references. 327 $a1.Emotion and Satisficing Engineering -- 2.Emotion and Innovation -- 3.Touch Feelings and Sensor for Measuring the Touch Feeling -- 4.Eliciting, Measuring and Predicting Affect via Physiological Measures for Emotional Design -- 5.Sensory Stimulation of Designers -- 6.FuzEmotion ? A Backward Kansei Engineering Tool for Assessing and Confirming Gender Inclination of Modern Cellular Phones -- 7.Proemotion: A Tool to Tell Mobile Phone?s Gender -- 8.Kansei Engineering : Methodology to the Project Oriented for the Customer -- 9.Kansei Engineering: Types of This Methodology -- 10.Interaction between Emotions and Mental Models in Engineering and Design Activities -- 11.Emotional Quality Inspection for Revealing Product Quality -- 12.Design Impression Analysis Based on Positioning and Coloring of Design Elements -- 13.Robust Design of Emotion for PET Bottle Shape Using Taguchi Method -- 14.Multisensory User Experience Design of Consumer Products. 330 $aIn an age of increasing complexity, diversification and change, customers expect services that cater to their needs and to their tastes. Emotional Engineering vol 2. describes how their expectations can be satisfied and managed throughout the product life cycle, if producers focus their attention more on emotion. Emotional engineering provides the means to integrate products to create a new social framework and develops services beyond product realization to create of value across a full lifetime.  14 chapters cover a wide range of topics that can be applied to product, process and industry development, with special attention paid to the increasing importance of sensing in the age of extensive and frequent changes, including: ? Multisensory stimulation and user experience  ? Physiological measurement ? Tactile sensation ? Emotional quality management ? Mental model ? Kansei engineering.   Emotional Engineering vol 2 builds on Dr Fukuda?s previous book, Emotional Engineering, and provides readers with a holistic view of its research and applications, enabling them to make strategic decisions on how they can go further beyond product realization. It is recommended for all pioneers in industry, academia and government, who are making tremendous efforts to work with their customers to create value.  . 606 $aIndustrial design$xPsychological aspects 606 $aEngineering$xPsychological aspects 615 0$aIndustrial design$xPsychological aspects. 615 0$aEngineering$xPsychological aspects. 676 $a004.019 676 $a620 676 $a620.0042 676 $a658.5 702 $aFukuda$b S$g(Shuichi),$f1943- 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910739470603321 996 $aEmotional Engineering$91407618 997 $aUNINA