LEADER 09592nam 2200529 450 001 9910555030603321 005 20220729062603.0 010 $a3-527-81640-2 010 $a3-527-81639-9 010 $a3-527-81642-9 035 $a(CKB)4940000000615558 035 $a(MiAaPQ)EBC6798571 035 $a(Au-PeEL)EBL6798571 035 $a(OCoLC)1285170587 035 $a(EXLCZ)994940000000615558 100 $a20220729d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectronic waste $erecycling and reprocessing for a sustainable future /$fMaria E. Holuszko, Amit Kumar, and Denise C. R. Espinosa 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2022] 210 4$d©2022 215 $a1 online resource (339 pages) 311 $a3-527-34490-X 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction, Vision, and Opportunities -- 1.1 Background -- 1.2 E?Waste -- 1.3 Outline -- References -- Chapter 2 e?Waste Management and Practices in Developed and Developing Countries* -- 2.1 Introduction -- 2.2 Overview on WEEE Management and Practices -- 2.3 International WEEE Management and Transboundary Movement -- 2.4 WEEE Management and Practices - Developed and Developing Countries -- 2.5 Developed Countries -- 2.5.1 Switzerland -- 2.5.2 Japan -- 2.5.3 Australia -- 2.6 Developing Countries -- 2.6.1 Brazil -- 2.6.2 India -- 2.6.3 South Africa -- 2.6.4 Nigeria -- 2.6.5 Taiwan -- 2.7 Conclusions -- References -- Chapter 3 e?Waste Transboundary Movement Regulations in Various Jurisdictions* -- 3.1 Background -- 3.2 International Legislation and Transboundary Movement -- 3.3 Extended Producer Responsibility (EPR) -- 3.4 Regulations in Various Jurisdictions -- 3.4.1 Europe -- 3.4.1.1 France -- 3.4.1.2 Germany -- 3.4.1.3 Switzerland -- 3.4.1.4 Norway -- 3.4.2 Americas -- 3.4.2.1 United States of America -- 3.4.2.2 Canada -- 3.4.2.3 Brazil -- 3.4.3 Asia -- 3.4.3.1 Japan -- 3.4.3.2 China -- 3.4.3.3 Taiwan -- 3.4.3.4 India -- 3.4.4 Africa -- 3.4.4.1 South Africa -- 3.4.4.2 Nigeria -- 3.4.5 Australia -- 3.5 Conclusions -- References -- Chapter 4 Approach for Estimating e?Waste Generation -- 4.1 Background -- 4.2 Econometric Analysis -- 4.3 Consumption and Use/Leaching/Approximation 1 Method -- 4.4 The Sales/Approximation 2 Method -- 4.5 Market Supply Method -- 4.5.1 Simple Delay -- 4.5.2 Distribution Delay Method -- 4.5.3 Carnegie Mellon Method/Mass Balance Method -- 4.6 Time?Step Method -- 4.7 Summary of Estimation Methods -- 4.8 Lifespan of Electronic Products -- 4.9 Global e?Waste Estimation -- References. 327 $aChapter 5 Materials Used in Electronic Equipment and Manufacturing Perspectives* -- 5.1 Introduction -- 5.2 Large Household Appliances (LHA) -- 5.3 Small Household Appliance (SHA) -- 5.4 IT and Telecommunications Equipment -- 5.4.1 Computers and Notebooks -- 5.4.2 Monitors and Screens -- 5.4.3 Mobile Phones (MP) -- 5.4.4 Printed Circuit Boards (PCB) -- 5.5 Photovoltaic (PV) Panels -- 5.6 Lighting Equipment -- 5.7 Toys, Leisure, and Sport -- 5.8 Future Trends in WEEE - Manufacturing, Design, and Demand -- References -- Chapter 6 Recycling Technologies - Physical Separation -- 6.1 Introduction -- 6.2 Dismantling -- 6.3 Comminution/Size Reduction -- 6.3.1 Shredders -- 6.3.2 Hammer Mills -- 6.3.3 High?Voltage Fragmentation -- 6.3.4 Knife Mills -- 6.3.5 Cryogrinding -- 6.4 Particle Size Analysis -- 6.5 Size Separation/Classification -- 6.5.1 Screening -- 6.5.2 Classification -- 6.5.2.1 Centrifugal Classifier -- 6.5.2.2 Gravitational Classifiers -- 6.6 Magnetic Separation -- 6.6.1 Low?Intensity Magnetic Separators -- 6.6.2 High?Intensity Magnetic Separators -- 6.7 Electrical Separation -- 6.7.1 Corona Electrostatic Separation -- 6.7.2 Triboelectric Separation -- 6.7.3 Eddy Current Separation -- 6.8 Gravity Separation -- 6.8.1 Jigs -- 6.8.2 Spirals -- 6.8.3 Shaking Tables -- 6.8.4 Zig?Zag Classifiers -- 6.8.5 Centrifugal Concentrators -- 6.8.6 Dense Medium Separation (DM Bath/Cyclone) -- 6.9 Froth Flotation -- 6.10 Sensor?Based Sorting -- 6.11 Example Flowsheets -- References -- Chapter 7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment -- 7.1 Introduction -- 7.2 Printed Circuit Boards -- 7.3 Pyrometallurgical Processes -- 7.3.1 Smelting -- 7.3.1.1 Copper?Smelting Processes - Sulfide Route -- 7.3.1.2 Copper?Smelting Processes - Secondary Smelters -- 7.3.1.3 Lead?Smelting Processes. 327 $a7.3.1.4 Advantages and Limitations of Smelting Processes -- 7.3.2 Electrochemical Processes -- 7.3.2.1 High?Temperature Electrolysis -- 7.3.2.2 Low?Temperature Electrolysis -- 7.3.3 Other Pyrometallurgical Operations Used in Electronic Waste Recycling -- 7.3.3.1 Roasting -- 7.3.3.2 Molten Salt Oxidation Treatment -- 7.3.3.3 Distillation -- 7.3.3.4 Pyrolysis -- References -- Chapter 8 Recycling Technologies - Hydrometallurgy -- 8.1 Background -- 8.2 Waste Printed Circuit Boards (WPCBs) -- 8.3 Photovoltaic Modules (PV) -- 8.4 Batteries -- 8.5 Light?Emitting Diodes (LEDs) -- 8.6 Trends -- References -- Chapter 9 Recycling Technologies - Biohydrometallurgy -- 9.1 Introduction -- 9.2 Bioleaching: Metal Winning with Microbes -- 9.3 Biosorption: Selective Metal Recovery from Waste Waters -- 9.3.1 Biosorption Via Metal Selective Peptides -- 9.3.2 Chelators Derived from Nature -- 9.4 Bioflotation: Separation of Particles with Biological Means -- 9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste -- 9.6 Conclusion -- References -- Chapter 10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization -- 10.1 Background -- 10.2 Nonmetal Fraction Composition -- 10.3 Benefits of NMF Recycling -- 10.3.1 Economic Benefits -- 10.3.2 Environmental Protection and Public Health -- 10.4 Recycling of NMF -- 10.4.1 Physical Recycling -- 10.4.1.1 Size Classification -- 10.4.1.2 Gravity Separation -- 10.4.1.3 Magnetic Separation -- 10.4.1.4 Electrical Separation -- 10.4.1.5 Froth Flotation -- 10.4.2 Chemical Recycling -- 10.5 Potential Usage -- References -- Chapter 11 Life Cycle Assessment of e?Waste - Waste Cellphone Recycling -- 11.1 Introduction -- 11.2 Background -- 11.2.1 Theory of Life Cycle Assessment -- 11.3 LCA Studies on WEEE -- 11.3.1 Applications on WEEE Management Strategy -- 11.3.2 Applications on WEEE Management System. 327 $a11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling -- 11.4 Case Study -- 11.4.1 Goal and Scope Definition -- 11.4.1.1 Functional Unit -- 11.4.1.2 System Boundary -- 11.4.2 Life Cycle Inventory -- 11.4.2.1 Formal Collection -- 11.4.2.2 Informal Collection -- 11.4.2.3 Mechanical Dismantling -- 11.4.2.4 Plastic Recycling -- 11.4.2.5 Screen Glass Recycling -- 11.4.2.6 Battery Disposal -- 11.4.2.7 Electronic Refining for Materials -- 11.4.3 Life Cycle Impact Assessment -- 11.4.4 Results -- 11.4.4.1 Feature Phone Formal Collection Scenario -- 11.4.4.2 Feature Phone Informal Collection Scenario -- 11.4.4.3 Smartphone Formal Collection Scenario -- 11.4.4.4 Smartphone Informal Collection Scenario -- 11.4.5 Discussion -- 11.5 Conclusion -- References -- Chapter 12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices -- 12.1 Introduction -- 12.1.1 Technological Innovation and Waste -- 12.1.2 Eco?friendliness -- 12.1.3 Organic Electronics -- 12.1.4 Opportunities for Green Organic Electronics -- 12.2 State of the Art in Biodegradable Electronics -- 12.3 Organic Field?Effect Transistors (OFETs) -- 12.3.1 Fundamentals -- 12.3.2 Anthraquinone, Benzoquinone, and Acenequinone -- 12.3.3 Quinacridones -- 12.4 Electrochemical Energy Storage -- 12.4.1 Quinones -- 12.4.2 Dopamine -- 12.4.3 Melanins -- 12.4.4 Tannins -- 12.4.5 Lignin -- 12.5 Biodegradation in Natural and Industrial Ecosystems -- 12.5.1 Degradation and Biodegradation -- 12.5.2 Composting Process -- 12.5.3 Materials Half?Life Under Composting Conditions -- 12.5.4 Biodegradation in the Environment -- 12.6 Microbiome in Natural and Industrial Ecosystems -- 12.6.1 The Ruminant-Hay Natural Ecosystem -- 12.6.2 The Termite-Wood Natural Ecosystem -- 12.6.3 The Industrial Composter-Biowaste Ecosystem -- 12.6.3.1 Municipal Composting Facility. 327 $a12.6.3.2 Engineered Composting Facility -- 12.6.4 Specialized Inoculant Adapted to Organic Matter -- 12.6.5 Specialized Inoculant Adapted to Heavy Metals -- 12.7 Concluding Remarks and Perspectives -- Acknowledgment -- References -- Chapter 13 Circular Economy in Electronics and the Future of e?Waste -- 13.1 Introduction -- 13.2 Digitalization and the Need for Electronic Devices -- 13.3 Recycling and Circular Economy -- 13.4 Challenges for e?Waste Recycling and Circular Economy -- 13.5 Drivers for Change - Circular Economy -- 13.6 Demand for Recyclable Products -- 13.7 Summary -- References -- Index -- EULA. 606 $aRecycling (Waste, etc.)$xTechnological innovations 606 $aSustainable development 608 $aElectronic books. 615 0$aRecycling (Waste, etc.)$xTechnological innovations. 615 0$aSustainable development. 676 $a363.7282 700 $aHoluszko$b M. E.$01252330 702 $aKumar$b Amit 702 $aEspinosa$b Denise C. R. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555030603321 996 $aElectronic waste$92903136 997 $aUNINA