LEADER 03674nam 2200601 450 001 9910555025503321 005 20220627141946.0 010 $a1-119-54991-4 010 $a1-119-54996-5 010 $a1-119-54995-7 035 $a(CKB)4100000010765556 035 $a(MiAaPQ)EBC6146792 035 $a(PPN)259703230 035 $a(OCoLC)1148175701 035 $a(EXLCZ)994100000010765556 100 $a20200624d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUnivariate, bivariate, and multivariate statistics using R $equantitative tools for data analysis and data science /$fDaniel J. Denis 210 1$aHoboken, New Jersey :$cWiley,$d2020. 215 $a1 online resource (287 pages) 311 $a1-119-54993-0 327 $aIntroduction to applied statistics -- Introduction to R and computational statistics -- Exploring data with R : essential graphics and visualization -- Means, correlations, counts : drawing inferences using easy-to-implement statistical tests -- Power analysis and sample size estimation using R -- Analysis of variance : fixed effects, random effects, mixed models and repeated measures -- Simple and multiple linear regression -- Logistic regression and the generalized linear model -- Multivariate analysis of variance (MANOVA) and discriminant analysis -- Principal components analysis -- Exploratory factor analysis -- Cluster analysis -- Nonparametric tests. 330 $a"This book provides a user-friendly and practical guide on R, with emphasis on covering a broader range of statistical methods than previous books on R. This is a "how to" book and will be of use to undergraduates and graduate students along with researchers and professionals who require a quick go-to source to help them perform essential statistical analyses and data management tasks in R. The book only assumes minimal prior knowledge of statistics, providing readers with the tools they need right now to help them understand and interpret their data analyses. This book covers univariate, bivariate, and multivariate statistical methods, as well as some nonparametric tests. It provides students with a hands-on easy-to-read manual on the wealth of applied statistics and essential R computing that they will need for their theses, dissertations, and research publications. A strength of this book is its scope of coverage of univariate through to multivariate procedures, while simultaneously serving as a friendly introduction to R software"--$cProvided by publisher. 606 $aAnalysis of variance$vTextbooks 606 $aMultivariate analysis$vTextbooks 606 $aMathematical statistics$xData processing$vTextbooks 606 $aR (Computer program language) 606 $aAnàlisi de variància$2thub 606 $aAnàlisi multivariable$2thub 606 $aEstadística matemàtica$2thub 606 $aProcessament de dades$2thub 608 $aLlibres electrònics$2thub 615 0$aAnalysis of variance 615 0$aMultivariate analysis 615 0$aMathematical statistics$xData processing 615 0$aR (Computer program language). 615 7$aAnàlisi de variància 615 7$aAnàlisi multivariable 615 7$aEstadística matemàtica 615 7$aProcessament de dades 676 $a519.53 700 $aDenis$b Daniel J.$f1974-$01146666 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555025503321 996 $aUnivariate, bivariate, and multivariate statistics using R$92819439 997 $aUNINA