LEADER 06300nam 2200469 450 001 9910555017103321 005 20220819010048.0 010 $a1-119-88167-6 010 $a1-119-88169-2 035 $a(MiAaPQ)EBC6817973 035 $a(Au-PeEL)EBL6817973 035 $a(CKB)19935015000041 035 $a(OCoLC)1287133927 035 $a(EXLCZ)9919935015000041 100 $a20220819d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 04$aThe solar system 2 $eexternal satellites, small bodies, cosmochemistry, dynamics, exobiology /$fThe?re?se Encrenaz, James Lequeux 205 $a2nd ed. 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE Limited :$cJohn Wiley & Sons, Incorporated,$d[2021] 210 4$d©2021 215 $a1 online resource (368 pages) 300 $aIncludes index. 311 08$aPrint version: Encrenaz, Thérèse The Solar System 2 Newark : John Wiley & Sons, Incorporated,c2022 9781789450347 327 $aCover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Satellites and Rings of the Giant Planets -- 1.1. Introduction -- 1.2. Jupiter's satellites -- 1.2.1. The Galilean satellites -- 1.2.2. The minor Jovian satellites -- 1.3. Saturn's satellites -- 1.3.1. Titan -- 1.3.2. Enceladus -- 1.3.3. The other icy satellites -- 1.3.4. Challenges for future missions in the Saturn system and Dragonfly -- 1.4. The satellites of Uranus and Neptune -- 1.4.1. The satellites of Uranus -- 1.4.2. The satellites of Neptune -- 1.4.3. Future exploration of the icy giant planets' systems -- 1.5. The rings -- 1.5.1. Tidal forces and the Roche limit -- 1.5.2. Flattening and ring dispersion -- 1.5.3. Jupiter's rings -- 1.5.4. Saturn's rings -- 1.5.5. Uranus's rings -- 1.5.6. Neptune's rings -- 1.5.7. The rings of small bodies -- 1.5.8. Ring dynamics -- 1.5.9. The origin of the rings -- 1.5.10. An exo-ring -- 1.6. References -- 2. Comets, Asteroids, and Dwarf Planets -- 2.1. Comets -- 2.1.1. Definition and nomenclature -- 2.1.2. The orbits and families of the comets -- 2.1.3. Cometary magnitude -- 2.1.4. Space exploration of the comets -- 2.1.5. The nucleus -- 2.1.6. The atmosphere -- 2.1.7. Dust and the tail -- 2.1.8. The chemical diversity of the comets: a relationship to their origins? -- 2.1.9. The interaction of comets with solar wind -- 2.2. The "historical" asteroids -- 2.2.1. The asteroids in the main belt -- 2.2.2. The asteroids that cross the orbit of the terrestrial planets -- 2.2.3. The Trojan asteroids -- 2.2.4. The properties of asteroids -- 2.3. The "new" asteroids -- 2.3.1. The Centaurs -- 2.3.2. Trans-Neptunian objects -- 2.3.3. Interstellar objects -- 2.3.4. The origin and evolution of the asteroids -- 2.4. The dwarf planets -- 2.4.1. Ceres -- 2.4.2. Pluto and its satellites -- 2.4.3. Eris, Haumea, and Makemake. 327 $a2.5. References -- 3. Meteorites and Cosmochemistry -- 3.1. Rocks falling from the sky -- 3.2. Origin of meteorites -- 3.3. Planetary differentiation and groups of meteorites -- 3.4. Chondrites and the origin of the Solar System -- 3.4.1. The chemical composition of chondrites -- 3.4.2. The mineralogy of chondrites -- 3.4.3. The isotopic characteristics of bulk meteorites -- 3.5. Differentiated meteorites -- 3.5.1. Fragments of the asteroid Vesta -- 3.5.2. Iron meteorites -- 3.5.3. Pallasites -- 3.5.4. Fragments of the planet Mars -- 3.6. Witnesses to the formation and evolution of the Solar System -- 3.7. References -- 4. Formation and Dynamic History of the Solar System¹ -- 4.1. Introduction -- 4.2. Laws of motion of the planets and satellites -- 4.2.1. Kepler's laws -- 4.2.2. Gravity -- 4.2.3. Newton's fundamental laws of dynamics -- 4.2.4. The orbital elements -- 4.3. The two-body problem -- 4.4. The three-body problem -- 4.4.1. Jacobi constant and Lagrange points -- 4.4.2. Tadpole and horseshoe orbits -- 4.4.3. Hill sphere -- 4.5. Perturbations and resonances -- 4.6. Stability and chaos in the Solar System -- 4.7. Orbits in relation to a flattened body -- 4.8. Tidal effect -- 4.8.1. Tidal deformation -- 4.8.2. Tidal torque -- 4.8.3. Roche limit -- 4.9. Nongravitational forces and orbits of small bodies -- 4.9.1. Radiation pressure (micrometer-sized grains) -- 4.9.2. Poynting-Robertson effect (small macroscopic particles) -- 4.9.3. The Yarkovsky Effect (meter to kilometer-sized particles) -- 4.9.4. Yorp torque (asymmetric bodies) -- 4.9.5. Friction from solar particles (submicrometer dust) -- 4.9.6. Friction in gas -- 4.10. Formation of planetary systems -- 4.10.1. A disk of planetoids -- 4.10.2. Formation of terrestrial planets -- 4.10.3. Formation of Jupiter -- 4.10.4. Formation of giant planets by core accretion. 327 $a4.10.5. Formation by disk instability -- 4.10.6. Disappearance of the gas -- 4.10.7. Catastrophic collisions -- 4.10.8. Small bodies -- 4.10.9. Planetary migration -- 4.10.10. Fate of the small bodies -- 4.10.11. Exoplanetary formation -- 4.11. References -- 5. Origin of Life and Extraterrestrial Life -- 5.1. Definition of life -- 5.2. The appearance of life on Earth -- 5.2.1. Physicochemical conditions -- 5.2.2. The first forms of life -- 5.2.3. The formation of living cells -- 5.3. Life elsewhere in the Solar System -- 5.3.1. Mars -- 5.3.2. Venus -- 5.3.3. Satellites of the giant planets -- 5.4. How can life be detected on exoplanets? -- 5.5. Communicating with other civilizations? -- 5.6. References -- 6 Methods for Studying the Solar System -- 6.1. History -- 6.2. Observational techniques -- 6.2.1. Remote sensing -- 6.2.2. Methods of space exploration -- 6.2.3. Virtual Observatory and databases -- 6.2.4. Perspectives of ground-based and space observations -- 6.3. Computer simulations -- 6.3.1. Dynamics -- 6.3.2. Global climate models -- 6.4. References -- Appendix Web links -- Glossary -- List of Authors -- Index -- EULA. 607 $aSolar system$xAge 608 $aElectronic books. 676 $a523.2 702 $aLequeux$b James 702 $aEncrenaz$b The?re?se 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555017103321 996 $aThe solar system 2$92905765 997 $aUNINA