LEADER 08746nam 2200505 450 001 9910554822303321 005 20211014153137.0 010 $a1-119-68977-5 010 $a1-119-68983-X 010 $a1-119-68982-1 035 $a(CKB)4100000011804787 035 $a(MiAaPQ)EBC6523012 035 $a(Au-PeEL)EBL6523012 035 $a(OCoLC)1243545755 035 $a(EXLCZ)994100000011804787 100 $a20211014d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRenewable integrated power system stability and control /$fHe?min Golpi?ra, Arturo R. Messina, Hassan Bevrani 210 1$aHoboken, New Jersey :$cWiley-IEEE Press,$d[2021] 210 4$dİ2021 215 $a1 online resource (353 pages) 225 1 $aWiley - IEEE Ser. 311 $a1-119-68979-1 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Power System Stability and Control -- 1.2 Current State of Power System Stability and Control -- 1.2.1 Frequency Control -- 1.2.2 Voltage Control -- 1.2.3 Oscillation Damping -- 1.3 Data-Driven Wide-Area Power System Monitoring and Control -- 1.4 Dynamics Modeling and Parameters Estimation -- 1.4.1 Modeling of Frequency, Voltage, and Angle Controls -- 1.4.2 Parameters Estimation -- 1.5 Summary -- References -- Chapter 2 MG Penetrated Power Grid Modeling -- 2.1 Introduction -- 2.2 Basic Concepts -- 2.2.1 Dynamic Equivalencing -- 2.2.2 Background on Study Zone and External System -- 2.3 Power Grid Modeling -- 2.3.1 The Notion of Center-of Gravity (COG) -- 2.3.1.1 Key Concept -- 2.3.1.2 Basic Assumptions -- 2.3.1.3 Modeling Formulation -- 2.3.1.4 Local Frequency Estimation -- 2.3.1.5 Simulation Results -- 2.3.2 An Enhanced COG-Based Model -- 2.3.2.1 Key Concept -- 2.3.2.2 Simulation Results -- 2.3.3 Generalized Equivalent Model -- 2.3.3.1 Basic Logic -- 2.3.3.2 Simulation and Results -- 2.4 MG Equivalent Model -- 2.4.1 Islanded Mode -- 2.4.1.1 Synchronous-Based DG -- 2.4.1.2 Genset Model Validation -- 2.4.1.3 Inverter-Based DG -- 2.4.1.4 Inverter-Based DG Model Validation -- 2.4.2 Grid-Connected Mode -- 2.4.2.1 Basic Logic -- 2.4.2.2 Model Validation -- 2.5 Summary -- References -- Chapter 3 Stability Assessment of Power Grids with High Microgrid Penetration -- 3.1 Introduction -- 3.1.1 Motivation -- 3.1.2 Relations with Previous Literature -- 3.2 Frequency Stability Assessment -- 3.2.1 Background on Frequency Indices -- 3.2.1.1 Rate of Change of Frequency -- 3.2.1.2 Frequency Nadir -- 3.2.1.3 Delta Frequency Detection -- 3.2.2 Frequency Stability Assessment Under High MG Penetration Levels -- 3.2.3 Sensitivity Factors. 327 $a3.2.3.1 Frequency Response -- 3.2.3.2 Delta Frequency Detection -- 3.2.4 Simulation and Results -- 3.3 Maximum Penetration Level: Frequency Stability -- 3.3.1 Basic Principle -- 3.3.2 Background on MG Modeling -- 3.3.3 Minimum Inertia Related to Frequency Nadir -- 3.3.4 Minimum Inertia Related to Delta Frequency Detection -- 3.3.5 Minimum Inertia Related to RoCoF -- 3.3.6 Maximum Penetration Level -- 3.3.7 Simulation and Results -- 3.3.7.1 Analysis Tools -- 3.3.7.2 Dynamical Simulation Results -- 3.4 Small-Signal Stability Assessment -- 3.4.1 Basic Definition -- 3.4.2 Key Concept -- 3.4.3 Simulation and Results -- 3.5 Maximum Penetration Level: Small-Signal Stability -- 3.5.1 Basic Idea -- 3.5.2 Simulation and Results -- 3.6 Voltage-Based Realization of the MG-Integrated Power Grid -- 3.6.1 Key Concepts -- 3.6.2 Jacobian Sensitivities -- 3.6.2.1 V-P Sensitivity -- 3.6.2.2 V-Q Sensitivity -- 3.6.3 Simulation and Results -- 3.7 Summary -- References -- Chapter 4 Advanced Virtual Inertia Control and Optimal Placement -- 4.1 Introduction -- 4.2 Virtual Synchronous Generator -- 4.2.1 Concept and Structure -- 4.2.2 Basic Control Scheme and Applications -- 4.2.3 Application in Power System Dynamic Enhancement -- 4.2.3.1 Scenario 1: 10-MW Load Increase at Bus 9 -- 4.2.3.2 Scenario 2: 20-MW Power Command Decrease of G3 -- 4.2.4 Application to Power Grids with HVDC Systems -- 4.3 Dispatchable Inertia Placement -- 4.3.1 Frequency Dynamics Enhancement -- 4.3.1.1 Background: Literature Review -- 4.3.1.2 Virtual Inertia Modeling -- Main Idea -- MUSIC Analysis: Methodology and Application -- 4.3.1.3 Experimental Verification -- 4.3.1.4 Economic Modeling -- 4.3.1.5 Simulation and Results -- 4.3.1.6 Sensitivity Analysis -- 4.3.2 Small-Signal Stability -- 4.3.2.1 Objective Function -- 4.3.2.2 Simulation Results -- 4.4 Summary -- References. 327 $aChapter 5 Wide-Area Voltage Monitoring in High-Renewable Integrated Power Systems -- 5.1 Introduction -- 5.2 Voltage Control Areas: A Background -- 5.2.1 Voltage Sensitivities -- 5.2.2 Electrical Distances -- 5.2.3 Reactive Control Zones and Pilot Nodes -- 5.2.3.1 Selection of Optimal Pilot Buses -- 5.2.3.2 Selection of Control Plants -- 5.2.4 Other Approaches -- 5.3 Data-driven Approaches -- 5.3.1 Wide-Area Voltage and Reactive Power Regulation -- 5.3.2 PMU-Based Voltage Monitoring -- 5.4 Theoretical Framework -- 5.4.1 Dynamic Trajectories -- 5.4.2 Spectral Graph Theory -- 5.4.3 Kernel Methods -- 5.4.3.1 Markov Matrices -- 5.4.3.2 The Markov Clustering Algorithm -- 5.4.4 Spatiotemporal Clustering -- 5.5 Case Study -- 5.5.1 Sensitivity Studies -- 5.5.2 Data-Driven Analysis -- 5.5.3 Measurement-Based Reactive Control Areas -- 5.5.3.1 Diffusion Maps -- 5.5.4 Direct Clustering -- 5.5.5 Correlation Analysis -- 5.5.5.1 Direct Analysis of Concatenated Data -- 5.5.5.2 Two-Way Correlation Analysis -- 5.5.5.3 Partial Least Squares Correlation -- 5.6 Summary -- References -- Chapter 6 Advanced Control Synthesis -- 6.1 Introduction -- 6.2 Frequency Dynamics Enhancement -- 6.2.1 Background: The Concept of Flexible Inertia -- 6.2.2 Frequency Dynamics Propagation -- 6.2.3 Inertia-Based Control Scheme -- 6.2.4 Flexible Inertia: Practical Considerations -- 6.2.5 Results and Discussions -- 6.3 Small Signal Stability Enhancement -- 6.3.1 Key Concept -- 6.3.2 Control Scheme Design -- 6.3.3 Simulation and Results -- 6.4 Summary -- References -- Chapter 7 Small-Signal and Transient Stability Assessment Using Data-Driven Approaches -- 7.1 Background and Motivation -- 7.2 Modal Characterization Using Data-Driven Approaches -- 7.2.1 Modal Decomposition -- 7.2.2 Multisignal Prony Analysis -- 7.2.2.1 Standard Prony Analysis -- 7.2.2.2 Modified Least-Squares Algorithm. 327 $a7.2.2.3 Multichannel Prony Analysis -- 7.2.2.4 Hankel-SVD Methods -- 7.2.3 Koopman and Dynamic Mode Decomposition Representations -- 7.2.3.1 The Koopman Operator -- 7.2.4 Dynamic Mode Decomposition -- 7.2.4.1 SVD-Based Methods -- 7.2.4.2 The Companion Matrix Approach -- 7.2.4.3 Energy Criteria -- 7.3 Studies of a Small-Scale Power System Model -- 7.3.1 System Data and Operating Scenarios -- 7.3.2 Exploratory Small-Signal Analysis -- 7.3.3 Large System Performance -- 7.3.3.1 Cases B-C -- 7.3.3.2 Case D -- 7.3.4 Mode Shape Identification -- 7.3.5 Temporal Clustering -- 7.4 Large-Scale System Study -- 7.4.1 Case Study Description -- 7.4.2 Renewable Generator Modeling -- 7.4.3 Effect of Inverter-Based DGs on Oscillatory Stability -- 7.4.4 Large System Performance -- 7.4.5 Model Validation -- 7.4.5.1 Reconstructed Flow Fields -- 7.4.6 Identification of Mode Shapes Using DMD -- 7.5 Analysis Results and Discussion -- References -- Chapter 8 Solar and Wind Integration Case Studies -- 8.1 General Context and Motivation -- 8.2 Study System -- 8.3 Wind Power Integration in the South Systems -- 8.3.1 Study Region -- 8.3.2 Existing System Limitations -- 8.4 Impact of Increased Wind Penetration on the System Performance -- 8.4.1 Study Considerations and Scenario Development -- 8.4.2 Base Case Assessment -- 8.4.2.1 System Oscillatory Response -- 8.4.3 High Wind Penetration Case -- 8.5 Frequency Response -- 8.5.1 Frequency Variations -- 8.5.2 Wind and Hydropower Coordination -- 8.5.3 Response to Loss-of-Generation Events -- 8.6 Effect of Voltage Control on System Dynamic Performance -- 8.6.1 Voltage Support and Reactive Power Dispatch -- 8.6.2 Effect of Voltage Control Characteristics -- 8.7 Summary -- References -- Index. 410 0$aWiley - IEEE Ser. 606 $aElectric power systems 615 0$aElectric power systems. 676 $a621.31 700 $aGolpi?ra$b He?min$01218883 702 $aMessina$b Arturo R. 702 $aBevrani$b Hassan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910554822303321 996 $aRenewable integrated power system stability and control$92818709 997 $aUNINA