LEADER 00804nam0-22002531i-450- 001 990001178110403321 035 $a000117811 035 $aFED01000117811 035 $a(Aleph)000117811FED01 035 $a000117811 100 $a20000920d1983----km-y0itay50------ba 101 0 $aeng 200 1 $aCentral extensions, galois groupes and ideal class groups of number fields$fby FROHLI CH A. 210 $aProvidence (RI)$cAmerican Mathematical Society$d1983 225 1 $aContemporary mathematics$v24 700 1$aFrohlich,$bA.$0348846 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001178110403321 952 $aC-1-(24$b2139$fMA1 959 $aMA1 996 $aCentral extensions, galois groupes and ideal class groups of number fields$9342048 997 $aUNINA DB $aING01 LEADER 02798nam 2200433 450 001 9910554254603321 005 20230629233252.0 010 $a83-66675-44-0 024 7 $a10.2478/9788366675445 035 $a(CKB)5590000000532505 035 $a(MiAaPQ)EBC6931148 035 $a(Au-PeEL)EBL6931148 035 $a(DE-B1597)584621 035 $a(OCoLC)1266228322 035 $a(DE-B1597)9788366675445 035 $a(EXLCZ)995590000000532505 100 $a20221102d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn introduction to calculus of variations and integral equations /$fRamakanta Meher 210 1$a[Place of publication not identified] :$cWalter de Gruyter GmbH,$d[2021] 215 $a1 online resource (249 pages) 311 $a83-66675-43-2 327 $tFrontmatter -- $tPREFACE -- $tCONTENT -- $tPart-I. CALCULUS OF VARIATIONS -- $tChapter-1. Introduction to variational calculus -- $tChapter-2. Conditional Extremum-Isoperimetric Problem -- $tChapter-3. Variational methods of Solving Ordinary differential equations -- $tChapter-4. Variational methods of Solving Partial differential equations -- $tPart-II. Linear Integral Equation -- $tChapter-5. Linear Integral Equation -- $tChapter-6. Eigen Values and Eigenfunctions -- $tChapter-7. Volterra Integral Equation -- $tAbout the Author 330 $aThis textbook entitled "An introduction to Calculus of variations and Integral equations" is intended to study the extremals of different types of variational problems and methods of finding the explicit solutions of integral equations, where ever possible. The absence of methods of finding an exact solution is intended to study the properties of solutions of the given integral equations. This book contains a total of 07 chapters and two sections. section-I includes the calculus of variation, while section-II discusses the part of the Integral Equation. Section-I has been divided into four chapters, while section-II has been divided into 03 chapters.This book is based on the syllabi of the theory of Calculus of variations and Integral equations prescribed for postgraduate students of mathematics and applied mathematics in different institutions like N.I.T?s, I.I.T?s, and universities of India abroad. This book will be useful for competitive examinations as well. 606 $aCalculus of variations 615 0$aCalculus of variations. 676 $a515.45 700 $aMeher$b Ramakanta$01217365 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910554254603321 996 $aAn Introduction to Calculus of Variations and Integral Equations$92815439 997 $aUNINA