LEADER 01868oam 2200469 450 001 9910554216003321 005 20210804175527.0 010 $a9783110630251 010 $a3-11-062773-6 010 $z9783110627633$b(hardback) 010 $a9783110630251$b(pdf) 010 $a9783110627732$b(epub) 035 $a(CKB)4100000011726313 035 $a(EXLCZ)994100000011726313 100 $a20210505d2021 uy 0 101 0 $aeng 135 $aurcn#---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgebraic combinatorics /$fEiichi Bannai, Etsuko Bannai, Tatsuro Ito, Rie Tanaka 210 1$aBoston :$cDE GRUYTER,$d2021. 215 $a1 online resource (xv, 425 pages) $cillustrations 225 1 $aDe gruyter series in discrete mathematics and applications;$v5 311 1 $a3-11-062763-9 320 $aIncludes bibliographical references (pages 399-420) and index. 330 $aAlgebraic combinatorics is the study of combinatorial objects as an extension of the study of finite permutation groups, or, in other words, group theory without groups. In the spirit of Delsarte's theory, this book studies combinatorial objects such as graphs, codes, designs, etc. in the general framework of association schemes, providing a comprehensive overview of the theory as well as pointing out to extensions. 410 0$aDe gruyter series in discrete mathematics and applications;$v5 606 $aCombinatorial analysis 615 0$aCombinatorial analysis. 676 $a518.01 700 $aBannai$b Eiichi$01218896 702 $aBannai$b Etsuko 702 $aIto$b Tatsuro 702 $aTanaka$b Rie 801 0$bDLC 801 1$bDLC 801 2$bCaOWtL 906 $aBOOK 912 $a9910554216003321 996 $aAlgebraic combinatorics$92818723 997 $aUNINA