LEADER 00856nam0-22002771i-450- 001 990000487230403321 005 20100329124356.0 035 $a000048723 035 $aFED01000048723 035 $a(Aleph)000048723FED01 035 $a000048723 100 $a20020821d1976----km-y0itay50------ba 101 0 $aeng 105 $ay-------001yy 200 1 $aGlare and uniformity in road lighting installations$fInternational commission on illumination 210 $aParis$cCIE$d1976 215 $a26 p.$cill.$d30 cm 225 1 $aPublication CIE$v31 (T.C. 4.6) 710 02$aInternational Commission on Illumination$0151581 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000487230403321 952 $a10 D IV 30$b11548$fDINEL 959 $aDINEL 996 $aGlare and uniformity in road lighting installations$9332861 997 $aUNINA LEADER 09062nam 2200493 450 001 9910544846703321 005 20220929192938.0 010 $a3-030-86482-0 035 $a(MiAaPQ)EBC6887151 035 $a(Au-PeEL)EBL6887151 035 $a(CKB)21167320800041 035 $a(PPN)260830968 035 $a(EXLCZ)9921167320800041 100 $a20220929d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectrophysiology $ebasics, modern approaches, and applications /$fJu?rgen Rettinger, Silvia Schwarz Linder, Wolfgang Schwarz 205 $aSecond edition. 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (225 pages) 311 08$aPrint version: Rettinger, Jürgen Electrophysiology Cham : Springer International Publishing AG,c2022 9783030864811 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Acknowledgements -- About This Book -- Important Physical Units -- Contents -- About the Authors -- Abbreviations -- Chapter 1: Introduction -- 1.1 Basic Background Knowledge -- 1.2 History of Electrophysiology -- Take-Home Messages -- References -- Chapter 2: Basics Theory -- 2.1 Electrical Characteristics of Biological Membranes -- 2.2 Ion Distribution at Biological Membranes -- 2.3 Donnan Distribution and Nernst Equation -- 2.3.1 Donnan Distribution -- 2.3.2 Nernst Equation -- 2.4 Goldman-Hodgkin-Katz Equation -- Take-Home Messages -- References -- Chapter 3: Basics: Methods -- 3.1 Recording Electrical Signals from Body Surface -- 3.2 The Example (ECG) -- 3.2.1 Electrophysiological Basics -- 3.2.2 Activation of the Heart Muscle -- 3.3 Recording Electrical Signals from Tissue -- 3.3.1 Intracardiac Electrograms -- 3.3.2 The Ussing Chamber -- 3.3.3 Recording from the Brain -- 3.3.4 Recording Extracellular Field Potentials with Multielectrode Arrays -- 3.4 Recording Electrical Signals from Single Cells -- 3.4.1 The Ag/AgCl Electrode -- 3.4.2 The Microelectrode -- 3.4.3 Ion-Selective Microelectrodes -- 3.4.3.1 Construction of Ion-Selective Microelectrodes -- 3.4.3.2 Theory of Ion-Selective Microelectrodes -- 3.4.4 The Carbon-Fibre Technique -- 3.4.4.1 Construction of Carbon-Fibre Microelectrodes -- 3.4.4.2 Theory of Carbon-Fibre Microelectrodes -- 3.4.4.3 Amperometric and Cyclic Voltammetric Measurements -- 3.4.5 Basics of Voltage Clamp -- 3.4.5.1 The Ideal Voltage Clamp -- 3.4.5.2 The Real Voltage Clamp -- 3.4.5.3 The Voltage Clamp with Two Electrodes -- 3.4.5.4 One-Electrode Voltage Clamp Used for the Patch-Clamp Technique -- 3.4.5.5 Performing Voltage Clamp -- 3.4.6 Noise in Electrophysiological Measurements -- 3.4.6.1 Thermal Noise -- 3.4.6.2 Shot Noise -- 3.4.6.3 Dielectric Noise -- 3.4.6.4 Digitisation Noise. 327 $a3.4.6.5 The Sampling Theorem and Aliasing Noise -- 3.4.6.6 Excess Noise -- Take-Home Messages -- References -- Chapter 4: Application of the Voltage-Clamp Technique -- 4.1 Different Versions of the Voltage-Clamp Technique -- 4.1.1 The Classic Squid Giant Axon -- 4.1.2 The Vaseline- or Sucrose-Gap Voltage Clamp -- 4.1.3 The Two-Microelectrode Voltage Clamp -- 4.1.4 The One-Electrode Voltage Clamp -- 4.1.5 The Open-Oocyte Voltage Clamp -- 4.2 Analysing Current Fluctuations -- 4.3 Analysing Transient Charge Movements (Gating Currents) -- 4.4 The Patch-Clamp Technique -- 4.4.1 Different Versions of Patch Clamp (Patch Conformations) -- 4.4.2 Advantages of the Different Patch Conformations -- 4.4.3 The Single-Channel Current and Conductance -- 4.4.4 The Sniffer-Patch Method -- 4.5 Automated Electrophysiology -- 4.5.1 Automated Patch Clamp -- Take-Home Messages -- References -- Chapter 5: Ion-Selective Channels -- 5.1 General Characteristics of Ion Channels -- 5.1.1 Selectivity of Ion Channels -- 5.1.2 Discrete Movement of Ions through Pores -- 5.2 Specific Ion Channels -- 5.2.1 The Na+ Channel (A Single-Ion Pore) -- 5.2.2 The K+ Channel (A Multi-Ion Pore) -- 5.2.3 The Ca2+ Channel (A Multi-Ion Pore) -- 5.2.4 Anion-Selective Channels -- Take-Home Messages -- References -- Chapter 6: Theory of Excitability -- 6.1 The Hodgkin-Huxley Description of Excitation -- 6.1.1 Experimental Basics -- 6.1.2 The Hodgkin-Huxley (HH) Description of Excitability -- 6.1.2.1 The Hypothetical Channel -- 6.1.2.2 The K+ Channel -- 6.1.2.3 The Na+ Channel -- 6.1.2.4 The HH Description -- 6.1.3 The Action Potential -- 6.1.3.1 Phenomenological Description -- 6.1.3.2 Calculation of Propagated Action Potential. -- 6.2 Continuous and Saltatory Spread of Action Potentials -- 6.2.1 The Electrotonic Potential -- 6.2.2 The Continuous Spread of an Action Potential. 327 $a6.2.3 The Saltatory Spread of an Action Potential -- 6.3 Generation and Transmission of Action Potentials -- 6.3.1 Generation -- 6.3.2 Transmission -- 6.4 Summary of the Different Types of Potentials -- 6.4.1 Surface Potential -- 6.5 Action Potential in Non-nerve Cells -- 6.5.1 Skeletal Muscle -- 6.5.2 Smooth Muscle -- 6.5.3 Heart Muscle -- 6.5.4 Plant Cells -- Take-Home Messages -- References -- Chapter 7: Carrier-Mediated Transport -- 7.1 General Characteristics of Carriers -- 7.1.1 Distinction Between Pores and Carriers -- 7.1.2 The Oocytes of Xenopus: A Model System -- 7.1.3 The Anion Exchanger -- 7.1.4 The Sodium Pump -- 7.1.4.1 Steady-State Pump Current -- 7.1.4.2 Transient Pump-Generated Currents -- 7.1.5 The Neurotransmitter Transporter GAT1 -- 7.2 Carriers Are Like Channels with Alternating Gates -- Take-Home Messages -- References -- Chapter 8: Examples of Application of the Voltage-Clamp Technique -- 8.1 Structure-Function Relationships of Carrier Proteins -- 8.1.1 The Na+,K+-ATPase -- 8.1.2 The Na+-Dependent GABA Transporter (GAT1) -- 8.2 Structure-Function Relationships of Ion Channels -- 8.2.1 Families of Various Ion Channels -- 8.2.1.1 The Voltage-Gated Ion Channel (VIC) Superfamily -- 8.2.1.2 The Ligand-Gated Ion Channel (LIC) Family -- 8.2.1.3 The Chloride Channel (ClC) Family -- 8.2.1.4 The Gap Junction-Forming (Connexin) Family -- 8.2.1.5 The Epithelial Na+ Channel (ENaC) Family -- 8.2.1.6 Mechanosensitive Ion Channels -- 8.2.2 ATP-Gated Cation Channel (ACC) Family -- 8.2.2.1 Structure and Classification of P2X Receptors -- 8.2.3 Experimental Results -- 8.2.3.1 The P2X1 Receptor -- 8.2.3.2 The P2X2 Receptor -- 8.2.3.3 Effect of Glycosylation on P2X1 Receptor Function -- 8.3 Viral Ion Channels -- 8.3.1 The 3a Protein of SARS Coronavirus -- 8.3.1.1 Inhibition of 3a-Mediated Current by the Anthrachinon Emodin. 327 $a8.3.1.2 Inhibition of 3a-Mediated Current by the Kaempferol Glycoside Juglanin -- 8.3.2 Channel Proteins of SARS Coronavirus-2 -- 8.3.3 The Viral Protein Unit (Vpu) of HIV-1 -- 8.3.4 The M2 (Matrix Protein 2) of Influenza a Virus -- 8.3.4.1 Inhibition of M2-Mediated Current by Kaempferol Triglycoside -- 8.4 Electrophysiology as a Tool in Chinese Medicine Research -- 8.4.1 Mechanisms in Acupuncture Points -- 8.4.1.1 Mast-Cell Degranulation -- 8.4.1.2 Mast-Cell Degranulation Is Initiated by Ion-Channel Activation -- 8.4.2 Mechanisms in Effected Sites -- 8.4.2.1 Co-Expression of Neurotransmitter Transporters and ?-Opioid Receptor -- 8.5 Electrophysiology as a Tool in Pharmacology -- 8.5.1 The Na+,Ca2+ Exchanger -- 8.5.2 Neurotransmitter Transporters -- 8.5.3 Ion Channels -- Take-Home Messages -- References -- Chapter 9: Appendix -- 9.1 Influence of External Electrical and Magnetic Fields on Physiological Function -- 9.1.1 Magnetostatic Fields -- 9.1.2 Electrostatic Fields -- 9.1.3 Electromagnetic Fields -- 9.1.3.1 Low-Frequency Electric Fields (50 Hz) -- 9.1.3.2 High Frequency Electric Fields (kHz - GHz) -- 9.1.3.3 Conclusion -- 9.2 A Laboratory Course: Two-Electrode Voltage Clamp (TEVC) -- 9.2.1 Motivation -- 9.2.2 Background -- 9.2.2.1 Electrical Characteristics of Biological Membranes -- The Membrane Potential -- The Membrane as an Electrical Unit -- Theoretical Background of Voltage Clamp -- The Principle of Voltage Clamp (See Sect. 3.4.5) -- Two-Electrode Voltage Clamp -- 9.2.3 Questions to Be Answered for the Course -- 9.2.4 Set-up and Basic Instructions -- 9.2.4.1 Experimental Set-up (See Fig. 9.6) -- 9.2.4.2 Preparation of Microelectrodes -- 9.2.4.3 Instructions for the Use of CellWorks Program for the Turbo TEC -- 9.2.4.4 Solutions -- 9.2.5 Experiments and Data Analysis -- 9.2.5.1 IV Characteristics -- Procedure -- Tasks. 327 $a9.2.5.2 Hypothesis Testing - the Paired-Sample T-Test -- 9.2.5.3 Determination of the Membrane Capacitance -- Procedure -- Tasks -- References -- Index. 606 $aElectrophysiology 615 0$aElectrophysiology. 676 $a612.813 700 $aRettinger$b Ju?rgen$01062905 702 $aSchwarz Linder$b Silvia 702 $aSchwarz$b W$g(Wolfgang), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910544846703321 996 $aElectrophysiology$92529018 997 $aUNINA LEADER 05908oam 22015014 450 001 9910973779303321 005 20250426110140.0 010 $a9786612841729 010 $a9781462367900 010 $a1462367909 010 $a9781451870794 010 $a1451870795 010 $a9781451988291 010 $a145198829X 010 $a9781282841727 010 $a1282841726 035 $a(CKB)3170000000055117 035 $a(EBL)1605853 035 $a(SSID)ssj0000943994 035 $a(PQKBManifestationID)11503135 035 $a(PQKBTitleCode)TC0000943994 035 $a(PQKBWorkID)10978557 035 $a(PQKB)11605604 035 $a(OCoLC)762469891 035 $a(MiAaPQ)EBC1605853 035 $a(IMF)WPIEE2008221 035 $a(IMF)WPIEA2008221 035 $aWPIEA2008221 035 $a(EXLCZ)993170000000055117 100 $a20020129d2008 uf 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCommodities and the Market Price of Risk /$fShaun Roache 205 $a1st ed. 210 1$aWashington, D.C. :$cInternational Monetary Fund,$d2008. 215 $a1 online resource (25 p.) 225 1 $aIMF Working Papers 225 0$aIMF working paper ;$vWP/08/221 300 $aDescription based upon print version of record. 311 08$a9781451915327 311 08$a1451915322 320 $aIncludes bibliographical references. 327 $aContents; I. Introduction; II. Merton's ICAPM Risk-pricing Model; A. Deriving the risk-pricing equation; B. Identifying state variables; III. Brief Review of the Literature; IV. Data; V. Estimating the Quantities and Prices of Risk; A. The macro risk exposure of commodities; B. Market prices for macro risk; VI. Results; A. Real interest rate risk is priced; B. The time-varying cost of interest rate insurance; C. Evidence for a commodity-specific risk premium; D. Model fit; VII. Conclusion; References; Appendix 330 3 $aCommodities are back following a stellar run of price performance, attracting financial investor attention. What are the fundamental reasons to hold commodities? One reason is the exposure offered to underlying risk factors. In this paper, I assess the macro risk exposure offered by commodity futures and test whether these risks are priced, using Merton's (1973) intertemporal capital asset pricing model for a sample of commodity prices covering the period January 1973 - February 2008. I find that commodity futures offer a hedge against lower interest rates and that investors are willing to accept lower expected returns for this position. Although some commodities are also a hedge against U.S. dollar depreciation, this risk is not priced. 410 0$aIMF Working Papers; Working Paper ;$vNo. 2008/221 606 $aRisk$xEconometric models 606 $aCommodity futures$xEconometric models 606 $aCapital assets pricing model 606 $aBanks and Banking$2imf 606 $aCapacity$2imf 606 $aCapital and Ownership Structure$2imf 606 $aCapital$2imf 606 $aCommercial products$2imf 606 $aCommodities$2imf 606 $aCommodity Markets$2imf 606 $aDerivative securities$2imf 606 $aFinance$2imf 606 $aFinancial Instruments$2imf 606 $aFinancial Risk and Risk Management$2imf 606 $aFinancial risk management$2imf 606 $aFinancial services law & regulation$2imf 606 $aFinancing Policy$2imf 606 $aFutures$2imf 606 $aGoodwill$2imf 606 $aInstitutional Investors$2imf 606 $aIntangible Capital$2imf 606 $aInterest rates$2imf 606 $aInterest Rates: Determination, Term Structure, and Effects$2imf 606 $aInvestment & securities$2imf 606 $aInvestment$2imf 606 $aInvestments: Commodities$2imf 606 $aInvestments: Futures$2imf 606 $aInvestments: General$2imf 606 $aMacroeconomics$2imf 606 $aMarket risk$2imf 606 $aNon-bank Financial Institutions$2imf 606 $aPension Funds$2imf 606 $aReal interest rates$2imf 606 $aReturn on investment$2imf 606 $aSaving and investment$2imf 606 $aValue of Firms$2imf 607 $aUnited States$2imf 615 0$aRisk$xEconometric models. 615 0$aCommodity futures$xEconometric models. 615 0$aCapital assets pricing model. 615 7$aBanks and Banking 615 7$aCapacity 615 7$aCapital and Ownership Structure 615 7$aCapital 615 7$aCommercial products 615 7$aCommodities 615 7$aCommodity Markets 615 7$aDerivative securities 615 7$aFinance 615 7$aFinancial Instruments 615 7$aFinancial Risk and Risk Management 615 7$aFinancial risk management 615 7$aFinancial services law & regulation 615 7$aFinancing Policy 615 7$aFutures 615 7$aGoodwill 615 7$aInstitutional Investors 615 7$aIntangible Capital 615 7$aInterest rates 615 7$aInterest Rates: Determination, Term Structure, and Effects 615 7$aInvestment & securities 615 7$aInvestment 615 7$aInvestments: Commodities 615 7$aInvestments: Futures 615 7$aInvestments: General 615 7$aMacroeconomics 615 7$aMarket risk 615 7$aNon-bank Financial Institutions 615 7$aPension Funds 615 7$aReal interest rates 615 7$aReturn on investment 615 7$aSaving and investment 615 7$aValue of Firms 676 $a330.015195 700 $aRoache$b Shaun$01815930 801 0$bDcWaIMF 906 $aBOOK 912 $a9910973779303321 996 $aCommodities and the Market Price of Risk$94371720 997 $aUNINA