LEADER 05612nam 2200505 450 001 9910633936703321 005 20230415044557.0 010 $a3-658-38111-6 035 $a(MiAaPQ)EBC7150342 035 $a(Au-PeEL)EBL7150342 035 $a(CKB)25504301600041 035 $a(PPN)266354645 035 $a(EXLCZ)9925504301600041 100 $a20230415d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSector coupling - energy-sustainable economy of the future $efundamentals, model and planning example of a total energy system (GES) /$fPrzemyslaw Komarnicki, Michael Kranhold, Zbigniew A. Styczynski 210 1$aWiesbaden, Germany :$cSpringer,$d[2023] 210 4$dİ2023 215 $a1 online resource (221 pages) 311 08$aPrint version: Komarnicki, Przemyslaw Sector Coupling - Energy-Sustainable Economy of the Future Wiesbaden : Springer Fachmedien Wiesbaden GmbH,c2022 9783658381103 320 $aIncludes bibliographical references. 327 $aIntro -- Foreword -- Preface -- Contents -- Abbreviations -- 1: Introduction: Climate Policy Goals of Sustainable Energy Supply -- 1.1 Why Do We Need a General Energy System (GES)? -- 1.1.1 World Population, Energy Resources and the ``Full World´´ -- 1.1.2 Energy Consumption and CO2 Emissions: From Kyoto Protocol to Paris Agreement to Green Deal -- 1.1.3 Sector Coupling: What Is It? -- 1.1.3.1 Introduction -- 1.1.3.2 Example Germany -- 1.2 Paradigm Shift in Electrical Energy Supply Due to Regenerative Generation -- 1.2.1 Power, Energy and Efficiency -- 1.2.2 Potentials of Renewable Generation -- 1.2.3 Dunkelflaute and Other Special Features -- 1.2.3.1 General Comments -- 1.2.3.2 Dunkelflaute -- 1.2.3.3 Frequency Maintenance: System Inertia. Can the Electric Power System Remain Stable Without Inertia? [42] -- 1.2.3.4 Offshore Wind and Green Power from Africa -- References -- 2: Methodology and Model Design for Sector Coupling in the General Energy System (GES) -- 2.1 Modelling of a GES -- 2.1.1 Energy Hub Model -- 2.1.2 Temporal Resolution of Energy Flows -- 2.1.3 Substitution of Energy Sources -- 2.2 Optimisation of a GES -- 2.2.1 General Comments -- 2.2.2 Approaches to System Optimisation -- 2.2.2.1 Scenario-Based Optimization -- 2.2.3 Dynamic Programming According to Bellmann -- 2.2.3.1 Optimization by Means of Linear Programming -- References -- 3: Energy Use Sectors and Their Energy Consumption -- 3.1 General Remarks -- 3.2 Energy Supply (Gas, Electricity, Heat) and the Role of Hydrogen (H2) -- 3.3 Industry: Net Zero Factory -- 3.4 Households -- 3.5 Transport: Electric Mobility -- 3.6 Trade: Commerce - Services (GHD) -- References -- 4: Methodology of Modelling the Energy Hub Components -- 4.1 Introduction -- 4.2 Methodology for Modelling Generation Sectors -- 4.2.1 Electricity -- 4.2.1.1 Introduction. 327 $a4.2.1.2 Modelling of Electricity Network Infrastructures -- 4.2.1.3 Simulation and Network Calculation Tool -- 4.2.2 Gas -- 4.2.2.1 Introduction -- 4.2.2.2 Modelling of Gas Network Infrastructures -- 4.2.2.3 Simulation and Software Tools -- 4.2.3 Heat -- 4.2.3.1 Introduction -- 4.2.3.2 Modelling of Heat Network Infrastructures -- 4.2.3.3 Simulation and Software Tools -- 4.2.4 Energy Market Design, Market Roles -- References -- 5: Flexibility of a General Energy System (GES) -- 5.1 Safe Operation of the General Energy System (GES) -- 5.2 Energy Storage -- 5.3 Evaluation of Flexibility -- 5.3.1 Introduction -- 5.3.2 Flexgraphs -- 5.3.3 Buffer Characteristics -- 5.3.4 Variable and Fixed Power Profiles -- 5.3.5 15-min Energy Values -- 5.4 Legal Framework -- 5.4.1 Introduction -- 5.4.2 Disconnectable Loads -- 5.4.3 Interruptible Consumption Units -- 5.4.4 Future Flexibility, System-Side Needs Analysis -- References -- 6: Role of Information and Communication Technology (ICT): Digitalisation of the Energy Industry -- 6.1 Development of Balancing in the Energy System Using the Example of Electricity -- 6.2 Current Balancing for Electricity, Gas and Heat Markets -- 6.2.1 Basics of Energy Balancing Using the Example of Electricity -- 6.2.2 Metering Point Operation: Role of the Smart Meter Rollout -- 6.2.3 Market Communication and Measurement Data Analysis -- 6.2.4 Balancing: Comparison Between Gas and Electricity -- 6.3 Role of ICT and Other Innovations in the System Management (Electricity) of the Future -- Literature -- 7: Perspectives of the General Energy System (GES) -- 7.1 Introduction -- 7.2 European Perspective -- 7.3 China Perspective -- 7.4 USA Perspective -- 7.5 Building a Sustainable Hydrogen Economy (Example EU/Germany) -- 7.5.1 Introduction -- 7.5.2 Concept for Germany -- 7.5.3 Regional Concepts Using the Example of the Land of Saxony-Anhalt. 327 $aReferences -- Appendix -- Conversion Chains (Energy Conversion Chains) of the Selected Processes (Table A.1). 606 $aElectric power distribution 606 $aEnergy industries 606 $aInterconnected electric utility systems 615 0$aElectric power distribution. 615 0$aEnergy industries. 615 0$aInterconnected electric utility systems. 676 $a621.319 700 $aKomarnicki$b Przemyslaw$0995630 702 $aKranhold$b Michael 702 $aStyczynski$b Zbigniew A$g(Zbigniew Antoni),$f1949- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910633936703321 996 $aSector coupling - energy-sustainable economy of the future$93090282 997 $aUNINA LEADER 04423nam 2200637 450 001 9910542869103321 005 20230809230443.0 010 $a3-11-038340-3 010 $a3-11-035178-1 024 7 $a10.1515/9783110351781 035 $a(CKB)3850000000001206 035 $a(MiAaPQ)EBC4851863 035 $a(DE-B1597)276799 035 $a(OCoLC)986030583 035 $a(OCoLC)987927213 035 $a(DE-B1597)9783110351781 035 $a(Au-PeEL)EBL4851863 035 $a(CaPaEBR)ebr11380709 035 $a(CaONFJC)MIL1008620 035 $a(EXLCZ)993850000000001206 100 $a20170519h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aMetric theories of gravity $eperturbations and conservation laws /$fAlexander N. Petrov, [and three others] 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2017. 210 4$dİ2017 215 $a1 online resource (622 pages) 225 1 $aDe Gruyter Studies in Mathematical Physics ;$vVolume 38 311 $a3-11-035173-0 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tPreface -- $tContents -- $tList of Figures -- $tPrimary notations -- $t1. Conservation laws in theoretical physics: A brief introduction -- $t2. Field-theoretical formulation of general relativity: The theory -- $t3. Asymptotically flat spacetime in the field-theoretical formulation -- $t4. Exact solutions of general relativity in the field-theoretical formalism -- $t5. Field-theoretical derivation of cosmological perturbations -- $t6. Currents and superpotentials on arbitrary backgrounds: Three approaches -- $t7. Conservation laws in an arbitrary multi-dimensional metric theory -- $t8. Conserved quantities in the Einstein-Gauss-Bonnet gravity -- $t9. Generic gravity: Particle content, weak field limits, conserved charges -- $t10. Conservation laws in covariant field theories with gauge symmetries -- $tAppendix A: Tensor quantities and tensor operations -- $tAppendix B: Retarded functions -- $tBibliography -- $tIndex 330 $aBy focusing on the mostly used variational methods, this monograph aspires to give a unified description and comparison of various ways of constructing conserved quantities for perturbations and to study symmetries in general relativity and modified theories of gravity. The main emphasis lies on the field-theoretical covariant formulation of perturbations, the canonical Noether approach and the Belinfante procedure of symmetrisation. The general formalism is applied to build the gauge-invariant cosmological perturbation theory, conserved currents and superpotentials to describe physically important solutions of gravity theories. Meticulous attention is given to the construction of conserved quantities in asymptotically-flat spacetimes as well as in asymptotically constant curvature spacetimes such as the Anti-de Sitter space. Significant part of the book can be used in graduate courses on conservation laws in general relativity. THE SERIES: DE GRUYTER STUDIES IN MATHEMATICAL PHYSICS The series is devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply, and develop further, with sufficient rigor, mathematical methods to given problems in physics. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They can also serve as secondary reading for lectures and seminars at advanced levels. 410 0$aDe Gruyter studies in mathematical physics ;$vVolume 38. 606 $aGravity 606 $aGravity anomalies 606 $aGravitational waves 606 $aGeneral relativity (Physics) 606 $aForce and energy 615 0$aGravity. 615 0$aGravity anomalies. 615 0$aGravitational waves. 615 0$aGeneral relativity (Physics) 615 0$aForce and energy. 676 $a531/.1401 700 $aPetrov$b Alexander N., $01117787 702 $aPetrov$b Alexander N. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910542869103321 996 $aMetric theories of gravity$92645540 997 $aUNINA