LEADER 03698nam 22007335 450 001 9910523751603321 005 20230820191722.0 010 $a3-030-85855-3 024 7 $a10.1007/978-3-030-85855-1 035 $a(MiAaPQ)EBC6839019 035 $a(Au-PeEL)EBL6839019 035 $a(CKB)20275220200041 035 $a(OCoLC)1291316403 035 $a(DE-He213)978-3-030-85855-1 035 $a(PPN)259387665 035 $a(EXLCZ)9920275220200041 100 $a20211221d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDemand Prediction in Retail $eA Practical Guide to Leverage Data and Predictive Analytics /$fby Maxime C. Cohen, Paul-Emile Gras, Arthur Pentecoste, Renyu Zhang 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (166 pages) 225 1 $aSpringer Series in Supply Chain Management,$x2365-6409 ;$v14 311 08$aPrint version: Cohen, Maxime C. Demand Prediction in Retail Cham : Springer International Publishing AG,c2021 9783030858544 327 $a1. Introduction -- 2. Data Pre-Processing and Modeling Factors -- 3. Common Demand Prediction Methods -- 4. Tree-Based Methods -- 5. Clustering Techniques -- 6. Evaluation and Visualization -- 7. More Advanced Methods -- 8. Conclusion and Advanced Topics. 330 $aFrom data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture. This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy. 410 0$aSpringer Series in Supply Chain Management,$x2365-6409 ;$v14 606 $aSales management 606 $aBusiness logistics 606 $aProduction management 606 $aQuantitative research 606 $aRetail trade 606 $aData mining 606 $aSales and Distribution 606 $aSupply Chain Management 606 $aOperations Management 606 $aData Analysis and Big Data 606 $aTrade and Retail 606 $aData Mining and Knowledge Discovery 615 0$aSales management. 615 0$aBusiness logistics. 615 0$aProduction management. 615 0$aQuantitative research. 615 0$aRetail trade. 615 0$aData mining. 615 14$aSales and Distribution. 615 24$aSupply Chain Management. 615 24$aOperations Management. 615 24$aData Analysis and Big Data. 615 24$aTrade and Retail. 615 24$aData Mining and Knowledge Discovery. 676 $a658.7 700 $aCohen$b Maxime C.$01080231 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910523751603321 996 $aDemand Prediction in Retail$92593131 997 $aUNINA