LEADER 10388nam 2200505 450 001 9910522951203321 005 20220327100904.0 010 $a3-030-66607-7 035 $a(CKB)4100000011979555 035 $a(MiAaPQ)EBC6676236 035 $a(Au-PeEL)EBL6676236 035 $a(OCoLC)1260347286 035 $a(PPN)258873256 035 $a(EXLCZ)994100000011979555 100 $a20220327d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aImmersive technology in smart cities $eaugmented and virtual reality in IoT /$feditors, Sagaya Aurelia and Sara Paiva 210 1$aCham, Switzerland :$cSpringer :$cEAI,$d[2022] 210 4$d©2022 215 $a1 online resource (270 pages) 225 1 $aEAI/Springer innovations in communication and computing 311 $a3-030-66606-9 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Acknowledgements -- Contents -- Chapter 1: Exploring Immersive Technology in Education for Smart Cities -- 1.1 Introduction -- 1.1.1 How Does the Technology Fit and What Are the Benefits? -- 1.2 Augmented Reality in Education -- 1.2.1 Remote Collaborative Classrooms -- 1.2.2 Safer Experiments and Demonstrations -- 1.3 Immersive Technology in Four Cs of Learning -- 1.3.1 Critical Thinking and Problem-Solving -- 1.3.2 Creativity and Innovation -- 1.3.3 Collaboration -- 1.3.4 Effective Communication -- 1.4 Applications of Immersive Technology in Education -- 1.4.1 Engineering Education -- 1.4.2 Medical Education -- 1.4.3 Complex Concepts in Mathematics and Space Technology -- 1.4.4 General Education -- 1.5 Research Method -- 1.5.1 Research Design -- 1.5.2 Sample of Study -- 1.5.3 AstroSolar Application -- 1.5.4 Research Process -- 1.5.5 Data Collection Utilities -- 1.6 Results -- 1.6.1 Expert's Interview -- 1.6.2 SUS Score -- 1.6.3 Usability and Learnability Factor -- 1.6.4 Feedback on Positive and Negative SUS Questionnaire -- 1.7 Conclusion and Future Work -- References -- Chapter 2: Immersive Learning About IC-Engine Using Augmented Reality -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Problem Statement and Objective -- 2.4 Methodology -- 2.5 Block Diagram -- 2.6 Implementation -- 2.7 Conclusion and Future Work -- References -- Chapter 3: Location-Based Mobile Augmented Reality Systems: A Systematic Review -- 3.1 Introduction -- 3.2 LBMAR Systems: A Walkthrough of Common Applications and Current State -- 3.3 Research Questions -- 3.4 Research Methods -- 3.5 Planning the Review -- 3.5.1 Data Sources -- 3.5.2 Search Terms -- 3.5.3 Inclusion and Exclusion Criteria -- 3.5.4 Categories for Analysis and Data Coding -- 3.6 Conducting the Review and Reporting the Review -- 3.6.1 Future Research -- 3.7 Conclusion -- References. 327 $aChapter 4: Innovative Natural Disaster Precautionary Methods Through Virtual Space -- 4.1 Introduction -- 4.2 Virtual Reality -- 4.2.1 Working of Virtual Reality -- 4.2.2 Key Features of Virtual Reality Technology -- 4.3 Natural Disasters -- 4.3.1 Causes of Natural Disasters -- 4.4 State of the Art -- 4.5 Proposed Model -- 4.5.1 The Type of Natural Disaster -- 4.5.2 Environment -- 4.5.3 Training -- 4.5.4 Precautionary Measures -- 4.5.5 Scenario Simulation -- 4.5.6 Trainee's Interaction -- 4.6 Result and Discussion -- 4.6.1 Simulation Process -- 4.7 Limitation -- 4.8 Future Enhancements -- 4.9 Conclusion -- References -- Chapter 5: Internet of Things: Immersive Healthcare Technologies -- 5.1 Introduction to Internet of Things -- 5.1.1 IoT Ecosystem and Its Components -- 5.2 Architecture of Internet of Things -- 5.3 Internet of Things in Healthcare -- 5.3.1 IoT Services -- 5.3.1.1 Elderly Assistance Through Ambient-Assisted Living Technology -- 5.3.1.2 IoMT (Internet of M Health) -- 5.3.1.3 Assistance Provided for Adverse Drug Reaction Patients -- 5.3.1.4 Health Concerns of the Public -- 5.3.1.5 IoT Healthcare with the Integration of Wearable Devices -- 5.3.1.6 Emergency Healthcare for Natural Disasters -- 5.3.1.7 Configuration of the Embedded Gateways -- 5.3.2 IoT Applications -- 5.3.2.1 Single Condition -- 5.3.2.2 Clustered-Condition Applications -- 5.4 More Details on the Applications in Healthcare -- 5.4.1 IoT Applications in Healthcare -- 5.4.1.1 Sensors and Technology Used for the Diseases -- 5.4.1.2 Apps in Use for Healthcare -- 5.5 Architecture for Healthcare-Based Internet of Things -- 5.5.1 Perception Layer -- 5.5.2 Network Layer -- 5.5.3 Middleware Layer -- 5.5.4 Application Layer -- 5.5.5 Business Layer -- 5.6 Challenges in Deployment of Healthcare System -- 5.6.1 Rules Regarding Standardization of Merchants and Sellers of Medical Devices. 327 $a5.6.2 Analyzing the Cost Effectiveness -- 5.6.3 The Process of Developing the Application -- 5.6.4 Low Power Requirements -- 5.6.5 Types of Network: Data Centric, Service, and Patients Centric -- 5.6.6 Issue of Reducing Scalability -- 5.6.7 Arise of New Conditions and Diseases -- 5.6.8 Identification and Managing Resources -- 5.6.9 The Issue of Quality of Service -- 5.6.10 Managing and Protecting the Data -- 5.6.11 Mobility and Heterogeneous Nature -- 5.7 Security in IoT Healthcare -- 5.7.1 Analyzing the Security Requirements in IoT -- 5.7.2 Security Issues in IoT Healthcare -- 5.7.3 Secured IoT Healthcare -- 5.8 Conclusion -- References -- Chapter 6: Implementation of an Intelligent Model Based on Big Data and Decision-Making Using Fuzzy Logic Type-2 for the Car Assembly Industry in an Industrial Estate in Northern Mexico -- 6.1 Introduction -- 6.1.1 Proposal Methodology -- 6.1.2 Main Stakeholders or Interest Groups -- 6.2 Business Simulators as Knowledge Manager -- 6.2.1 Industry 4.0 -- 6.2.2 Big Data -- 6.2.3 Fuzzy Logic Type-2 -- 6.3 Simulation Execution Methodology -- 6.3.1 Measure Knowledge Management -- 6.3.2 The Intellect Model -- 6.4 Results -- 6.5 Conclusions and Future Research -- 6.5.1 Future Research -- References -- Chapter 7: Cloud Computing Model on Wireless Ad Hoc Network Using Clustering Mechanism for Smart City Applications -- 7.1 Introduction -- 7.1.1 Cloud Computing -- 7.1.2 Clustering Mechanism -- 7.1.3 Clustering Mechanism in Cloud Computing -- 7.1.4 Ad Hoc Networks -- 7.2 Related Works -- 7.2.1 Cloud Computing -- 7.2.2 Ad Hoc Networks -- 7.2.3 Clustering Mechanism in Cloud Computing -- 7.3 Clustering in Cloud Computing -- 7.3.1 Pseudocode: Cluster Creation -- 7.3.2 Pseudocode: Clusterhead Election -- 7.3.3 Experimental Results -- 7.4 Cloud Computing Model on Clustered Wireless Ad Hoc Networks. 327 $a7.5 Clustered Wireless Ad Hoc Cloud Network for Smart City Applications -- 7.5.1 Storage and Resource Sharing -- 7.5.2 Data Analytics -- 7.5.3 Virtual Machine Clustering -- 7.5.4 Fog Computing or Edge Computing -- 7.5.5 Green Computing -- 7.6 Conclusion -- References -- Chapter 8: Smart Cities New Paradigm Applications and Challenges -- 8.1 Introduction -- 8.2 The Service Delivery Progression from Push Model into the Ecosystems Model -- 8.3 Pillars of the Fourth Industrial Revolution -- 8.4 The Current State of Smart Services -- 8.5 Smart Cities Services Vs. Smart Connected Giant Technology and Services "SCGTS" -- 8.6 Proposed Smart Cities Collaborative Ecosystems -- 8.6.1 Infrastructure Layer -- 8.6.2 Application Layer -- 8.6.2.1 Application to Application Exchange -- 8.6.2.2 Application to Data Zone Exchange -- 8.6.2.3 Application to Grade Service Exchange -- 8.6.2.4 Application to Infrastructure Exchange -- 8.6.3 Services Layer -- 8.6.4 Cloud of Digital Data -- 8.6.5 End Users -- 8.7 Smart Applications -- 8.7.1 Smart Urban Energy Systems -- 8.7.1.1 Energy Infrastructure -- 8.7.1.2 Energy Applications -- 8.7.1.3 Energy Cloud Zone -- 8.7.1.4 End Users -- 8.7.1.5 Energy Services -- 8.7.1.6 Energy Standardization and Protocols -- 8.7.2 Smart Urban Transportation Systems -- 8.7.2.1 Transportations Infrastructure -- 8.7.2.2 Transportation Applications -- 8.7.2.3 Transportation Cloud Zone -- 8.7.2.4 End Users -- 8.7.2.5 Transportation Services -- 8.7.2.6 Transportation Standardized and Protocols -- 8.8 Transition Plan Properties and Challenges -- 8.9 Conclusion -- 8.10 Exercises -- 8.10.1 Short Answers Questions -- 8.10.2 True/False Questions -- References -- Chapter 9: A Survey on IoT Applications in Smart Cities -- 9.1 Introduction -- 9.2 Related Work -- 9.3 Applications of IoT in Smart Cities -- 9.3.1 Smart Security -- 9.3.2 Smart Services. 327 $a9.3.3 Smart Infrastructure -- 9.3.4 Smart Home and Buildings -- 9.3.5 Smart Environment -- 9.3.6 Waste Management -- 9.3.7 Smart Grid -- 9.3.8 E-Governance -- 9.3.9 Smart Agriculture and Animal Farming -- 9.4 Conclusion -- References -- Chapter 10: IoT-Based Water Quality and Quantity Monitoring System for Domestic Usage -- 10.1 Introduction -- 10.1.1 Overview of the Existing Systems -- 10.2 Proposed System -- 10.2.1 Ultrasonic Sensor -- 10.2.2 Turbidity Sensor -- 10.2.3 pH Sensor -- 10.2.4 NTC Thermistor -- 10.2.5 Flow Measurement -- 10.2.6 Arduino UNO -- 10.2.7 RF Module -- 10.2.8 LED -- 10.2.9 LCD -- 10.3 Results and Discussion -- 10.3.1 Steps for Connection -- 10.4 Conclusion and Future Scope -- References -- Chapter 11: Threat Modeling and IoT Attack Surfaces -- 11.1 Introduction -- 11.2 IoT Layered Architecture -- 11.3 IoT Technologies and Protocols -- 11.4 IoT Operating Systems -- 11.5 IT Communication Model -- 11.5.1 Device-to-Device Model -- 11.5.2 Device-to-Cloud Model -- 11.5.3 Device to Gateway Model -- 11.5.4 Back-End Data Sharing Model -- 11.6 IoT Issues and Challenges -- 11.6.1 IoT Security Problems -- 11.7 IoT Vulnerabilities and Attack Surfaces -- 11.8 Tools and Techniques -- 11.8.1 Defend IoT Security Issues -- 11.9 Conclusion -- References -- Index. 410 0$aEAI/Springer innovations in communication and computing. 606 $aAugmented reality 615 0$aAugmented reality. 676 $a006.8 702 $aAurelia$b Sagaya 702 $aPaiva$b Sara$f1979- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910522951203321 996 $aImmersive Technology in Smart Cities$92594741 997 $aUNINA