LEADER 04291nam 22007815 450 001 9910522920203321 005 20230810173258.0 010 $a3-030-78999-3 024 7 $a10.1007/978-3-030-78999-2 035 $a(CKB)5590000000550956 035 $a(MiAaPQ)EBC6716411 035 $a(Au-PeEL)EBL6716411 035 $a(OCoLC)1267765337 035 $a(DE-He213)978-3-030-78999-2 035 $a(PPN)257351957 035 $a(EXLCZ)995590000000550956 100 $a20210831d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSimulation of Thermoelastic Behaviour of Spacecraft Structures $eFundamentals and Recommendations /$fby Simon Appel, Jaap Wijker 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (409 pages) 225 1 $aSpringer Aerospace Technology,$x1869-1749 311 $a3-030-78998-5 320 $aIncludes bibliographical references and index. 327 $aThermoelastic verification -- Occurrence of thermoelastic phenomenon in Spacecraft -- Physics of thermoelastics -- Modelling for thermoelastic -- Thermal modelling for thermo-elastic analysis -- Structural modelling for thermoelastic analysis -- Transfer of thermal analysis results to the structural model -- Prescribed Average Temperature Method -- Generation of linear conductors for lumped parameter thermal models -- Estimating uncertainties in the thermoelastic analysis process -- Solutions. 330 $aThis book provides recommendations for thermal and structural modelling of spacecraft structures for predicting thermoelastic responses. It touches upon the related aspects of the finite element and thermal lumped parameter method. A mix of theoretical and practical examples supports the modelling guidelines. Starting from the system needs of instruments of spacecraft, the reader is supported with the development of the practical requirements for the joint development of the thermal and structural models. It provides points of attention and suggestions to check the quality of the models. The temperature mapping problem, typical for spacecraft thermoelastic analysis, is addressed. The principles of various temperature mapping methods are presented. The prescribed average temperature method, co-developed by the authors, is discussed in detail together with its spin-off to provide high quality conductors for thermal models. The book concludes with the discussion of the application of uncertainty assessment methods. The thermoelastic analysis chain is computationally expensive. Therefore, the 2k+1 point estimate method of Rosenblueth is presented as an alternative for the Monte Carlo Simuation method, bringing stochastic uncertainty analysis in reach for large thermoelastic problems. 410 0$aSpringer Aerospace Technology,$x1869-1749 606 $aAerospace engineering 606 $aAstronautics 606 $aThermodynamics 606 $aHeat engineering 606 $aHeat transfer 606 $aMass transfer 606 $aMechanics, Applied 606 $aSolids 606 $aOuter space$xExploration 606 $aAerospace Technology and Astronautics 606 $aEngineering Thermodynamics, Heat and Mass Transfer 606 $aSolid Mechanics 606 $aSpace Exploration and Astronautics 615 0$aAerospace engineering. 615 0$aAstronautics. 615 0$aThermodynamics. 615 0$aHeat engineering. 615 0$aHeat transfer. 615 0$aMass transfer. 615 0$aMechanics, Applied. 615 0$aSolids. 615 0$aOuter space$xExploration. 615 14$aAerospace Technology and Astronautics. 615 24$aEngineering Thermodynamics, Heat and Mass Transfer. 615 24$aSolid Mechanics. 615 24$aSpace Exploration and Astronautics. 676 $a629.47 700 $aAppel$b Simon$01077884 702 $aWijker$b Jaap J.$f1944- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910522920203321 996 $aSimulation of thermoelastic behaviour of spacecraft structures$92871726 997 $aUNINA