LEADER 03427nam 22006015 450 001 9910520085203321 005 20251113190100.0 010 $a981-16-5576-6 024 7 $a10.1007/978-981-16-5576-0 035 $a(MiAaPQ)EBC6838602 035 $a(Au-PeEL)EBL6838602 035 $a(CKB)20275118700041 035 $a(OCoLC)1290841485 035 $a(PPN)259387517 035 $a(DE-He213)978-981-16-5576-0 035 $a(EXLCZ)9920275118700041 100 $a20211217d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aProceedings of the Forum "Math-for-Industry" 2018 $eBig Data Analysis, AI, Fintech, Math in Finances and Economics /$fedited by Jin Cheng, Xu Dinghua, Osamu Saeki, Tomoyuki Shirai 205 $a1st ed. 2021. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2021. 215 $a1 online resource (191 pages) 225 1 $aMathematics for Industry,$x2198-3518 ;$v35 311 08$aPrint version: Cheng, Jin Proceedings of the Forum Math-For-Industry 2018 Singapore : Springer Singapore Pte. Limited,c2021 9789811655753 320 $aIncludes bibliographical references. 327 $aA Brief Review of Some Swarming Models using Stochastic Differential Equations -- Copula-based estimation of Value at Risk for the portfolio problem -- An Overview of Exact Solution Methods for Guaranteed Minimum Death Benefit Options in Variable Annuities -- Determinantal reinforcement learning with techniques to avoid poor local optima -- Surface Denoising based on Normal Filtering in a Robust Statistics Framework -- Mathematical Modeling and Inverse Problem Approaches for Functional -- Clothing Design based on Thermal Mechanism -- Unique continuation on a sphere for Helmholtz equation and its numerical treatments -- Notes on Backward Stochastic Differential Equations for Computing XVA. 330 $aThis volume includes selected technical papers presented at the Forum ?Math-for-Industry? 2018. The papers written by eminent researchers and academics working in the area of industrial mathematics from the viewpoint of financial mathematics, machine learning, neural networks, inverse problems, stochastic modelling, etc., discuss how the ingenuity of science, technology, engineering and mathematics are and will be expected to be utilized. This volume focuses on the role that mathematics-for-industry can play in interdisciplinary research to develop new methods. The contents are useful for researchers both in academia and industry working in interdisciplinary sectors. 410 0$aMathematics for Industry,$x2198-3518 ;$v35 606 $aEngineering mathematics 606 $aQuantitative research 606 $aStatistics 606 $aEngineering Mathematics 606 $aData Analysis and Big Data 606 $aApplied Statistics 615 0$aEngineering mathematics. 615 0$aQuantitative research. 615 0$aStatistics. 615 14$aEngineering Mathematics. 615 24$aData Analysis and Big Data. 615 24$aApplied Statistics. 676 $a510.243631 702 $aCheng$b Jin$f1963- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910520085203321 996 $aProceedings of the Forum "Math-for-Industry" 2018$92910299 997 $aUNINA