LEADER 02685nam 2200589 a 450 001 9910830189403321 005 20170816121012.0 010 $a1-118-32972-4 010 $a1-118-32975-9 010 $a1-283-54241-2 010 $a9786613854865 010 $a1-118-32974-0 035 $a(CKB)2550000000107743 035 $a(EBL)967489 035 $a(SSID)ssj0000689941 035 $a(PQKBManifestationID)11388089 035 $a(PQKBTitleCode)TC0000689941 035 $a(PQKBWorkID)10621831 035 $a(PQKB)10695023 035 $a(MiAaPQ)EBC967489 035 $a(DLC) 2012013983 035 $a(OCoLC)804860749 035 $a(EXLCZ)992550000000107743 100 $a20120403d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aHistorical environmental variation in conservation and natural resource management$b[electronic resource] /$fedited by John A. Wiens ... [et al.] 210 $aChichester, West Sussex, U.K. $cWiley-Blackwell$d2012 215 $a1 online resource (362 p.) 300 $aDescription based upon print version of record. 311 $a1-4443-3792-0 311 $a1-4443-3793-9 320 $aIncludes bibliographical references and index. 327 $asection 1. Background and history -- section 2. Issues and challenges -- section 3. Modeling historic variation and its application for understanding future variability -- section 4. Case studies of applications -- section 5. Global perspectives -- section 6. Challenges for the future. 330 $aIn North America, concepts of Historical Range of Variability are being employed in land-management planning for properties of private organizations and multiple government agencies. The National Park Service, U.S. Fish & Wildlife Service, Bureau of Land Management, U.S. Forest Service, and The Nature Conservancy all include elements of historical ecology in their planning processes. Similar approaches are part of land management and conservation in Europe and Australia. Each of these user groups must struggle with the added complication of rapid climate change, rapid land-use change, and tech 606 $aLandscape ecology 606 $aNatural resources$xCo-management 615 0$aLandscape ecology. 615 0$aNatural resources$xCo-management. 676 $a333.7 676 $a333.72 701 $aWiens$b John A$0910905 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830189403321 996 $aHistorical environmental variation in conservation and natural resource management$94039979 997 $aUNINA LEADER 03389nam 22006135 450 001 9910520077503321 005 20251113181057.0 010 $a9783030927141$b(electronic bk.) 010 $z9783030927134 024 7 $a10.1007/978-3-030-92714-1 035 $a(MiAaPQ)EBC6838907 035 $a(Au-PeEL)EBL6838907 035 $a(CKB)20275210700041 035 $a(OCoLC)1291277845 035 $a(PPN)259386782 035 $a(DE-He213)978-3-030-92714-1 035 $a(EXLCZ)9920275210700041 100 $a20211221d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBiosensing with Silicon $eFabrication and Miniaturization of Electrochemical and Cantilever Sensors /$fby Enakshi Bhattacharya 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (115 pages) 225 1 $aSpringerBriefs in Materials,$x2192-1105 311 08$aPrint version: Bhattacharya, Enakshi Biosensing with Silicon Cham : Springer International Publishing AG,c2021 9783030927134 327 $aIntroduction -- Materials and technology -- EISCAP -- Measurement protocol and Readout circuit -- Cantilever sensors. 330 $aThis book discusses two silicon biosensors: an electrochemical sensor ? the Electrolyte Insulator Silicon Capacitor (EISCAP), and a mechanical resonant cantilever sensor. The author presents the principle and the technology behind the device fabrication and miniaturization, stable and reproducible functionalization protocols for bioreceptor immobilization, and the measurement and the data analysis for extracting the best performance from these sensors. EISCAP sensors, used for the estimation of triglycerides and urea, have been improved through the use of micromachining processes. The miniaturization brought out advantages as well as challenges which are discussed in this book, resulting in a prototype mini-EISCAP with a readout circuit for fast and accurate estimation of triglycerides. The author also reports on the sensitivity improvements in the estimation of triglycerides and urea obtained with the polycrystalline silicon cantilever and its measurements in liquidmedia. The book is ideal for materials scientists and engineers working in the field of biosensors and MicroElectroMechanical systems (MEMS) and their optimizations, as well as researchers with biochemical or biomedical expertise, in order to have a fresh and updated review on the last progresses reached with EISCAPs and cantilever sensors. 410 0$aSpringerBriefs in Materials,$x2192-1105 606 $aMaterials 606 $aDetectors 606 $aSolid state physics 606 $aElectrochemistry 606 $aSensors and biosensors 606 $aElectronic Devices 606 $aElectrochemistry 615 0$aMaterials. 615 0$aDetectors. 615 0$aSolid state physics. 615 0$aElectrochemistry. 615 14$aSensors and biosensors. 615 24$aElectronic Devices. 615 24$aElectrochemistry. 676 $a543 700 $aBhattacharya$b Enakshi$01075238 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910520077503321 996 $aBiosensing with Silicon$92584225 997 $aUNINA