LEADER 02960nam 22006615 450 001 9910520073503321 005 20251113180745.0 010 $a9783030749200$b(electronic bk.) 010 $z9783030749194 024 7 $a10.1007/978-3-030-74920-0 035 $a(MiAaPQ)EBC6845679 035 $a(Au-PeEL)EBL6845679 035 $a(CKB)20462092800041 035 $a(PPN)260833827 035 $a(OCoLC)1293245346 035 $a(DE-He213)978-3-030-74920-0 035 $a(EXLCZ)9920462092800041 100 $a20220106d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe 2x2 Matrix $eContingency, Confusion and the Metrics of Binary Classification /$fby A.J. Larner 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (175 pages) 225 1 $aMathematics and Statistics Series 311 08$aPrint version: Larner, A. J. The 2x2 Matrix Cham : Springer International Publishing AG,c2022 9783030749194 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Paired measures -- Paired complementary measures -- Unitary measures -- Reciprocal measures -- Other measures, other tables -- Outcome measures not directly related to the 2x2 table -- Index. 330 $aThis book presents and discusses the numerous measures of test performance that can be derived from 2x2 tables. Worked examples based on pragmatic test accuracy study data are used in chapters to illustrate relevance to day-to-day clinical practice. Readers will gain a good understanding of sensitivity and specificity and predictive values along with many other parameters. The contents are highly structured and the use of worked examples facilitates understanding and interpretation. This book is a resource for clinicians in any discipline who are involved in the performance or assessment of test accuracy studies, and professionals in the disciplines of machine learning or informatics wishing to gain insight into clinical applications of 2x2 tables. 410 0$aMathematics and Statistics Series 606 $aBiometry 606 $aNeurology 606 $aMedical informatics 606 $aMachine learning 606 $aBiostatistics 606 $aNeurology 606 $aHealth Informatics 606 $aMachine Learning 615 0$aBiometry. 615 0$aNeurology. 615 0$aMedical informatics. 615 0$aMachine learning. 615 14$aBiostatistics. 615 24$aNeurology. 615 24$aHealth Informatics. 615 24$aMachine Learning. 676 $a519.56 676 $a610.285 700 $aLarner$b A. J.$0782674 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910520073503321 996 $aThe 2x2 Matrix$92584186 997 $aUNINA