LEADER 02511nam 22005293u 450 001 9910511743503321 005 20210107190106.0 010 $a1-925210-00-6 035 $a(CKB)3710000000244950 035 $a(EBL)1794214 035 $a(OCoLC)891449717 035 $a(SSID)ssj0001607347 035 $a(PQKBManifestationID)16315269 035 $a(PQKBTitleCode)TC0001607347 035 $a(PQKBWorkID)14895412 035 $a(PQKB)11701095 035 $a(MiAaPQ)EBC1794214 035 $a(Au-PeEL)EBL1794214 035 $a(EXLCZ)993710000000244950 100 $a20141027d2014|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEyes to the Floor$b[electronic resource] 210 $aSydney $cCurrency Press$d2014 215 $a1 online resource (120 p.) 300 $aDescription based upon print version of record. 327 $aCover; Title Page; Playwright's Biography; Writer's Notes; First Production; Characters; Eyes to the Floor; Scene One; Scene Two; Scene Three; Scene Four; Scene Five; Scene Six; Scene Seven; Scene Eight; Scene Nine; Scene Ten; Scene Eleven; Scene Tweleve; Scene Thirteen; Scene Fourteen; Scene Fifteen; Scene Sixteen; Scene Seventeen; Scene Eighteen; Scene Nineteen; Scene Twenty; Scene Twenty-One; Scene Twenty-Two; Scene Twenty-Three; Scene Twenty-Four; Scene Twenty-Five; Scene Twenty-Six; Scene Twenty-Seven; Scene Twenty-Eight; Scene Twenty-Nine; Copyright Page 330 $aChronicles the experience of girls sent from Parramatta Girls Home to the Hay Girls Home for even more brutal, punitive treatment. Written to be played by young adults, this moving work emphasises the childish vulnerability of the inmates in a world where they must find connection with each other in order to to survive. Artfully woven with movement, chorus work and poetry, it is a compelling companion work to Parramatta Girls. 606 $aPoem 606 $aPoetry -- 20th century -- History and criticism 606 $aPoetry -- 21st century -- History and criticism 608 $aElectronic books. 615 4$aPoem. 615 4$aPoetry -- 20th century -- History and criticism. 615 4$aPoetry -- 21st century -- History and criticism. 676 $a809.1 700 $aValentine$b Alana$01068077 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910511743503321 996 $aEyes to the Floor$92552515 997 $aUNINA LEADER 10676nam 2200505 450 001 9910506378303321 005 20220713140640.0 010 $a3-030-70672-9 035 $a(CKB)4950000000280088 035 $a(MiAaPQ)EBC6787648 035 $a(Au-PeEL)EBL6787648 035 $a(OCoLC)1280107762 035 $a(PPN)258301031 035 $a(EXLCZ)994950000000280088 100 $a20220713d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aThermal spray fundamentals $efrom powder to part /$fMaher I. Boulos, Pierre L. Fauchais, Joachim V. R. Heberlein 205 $a2nd ed. 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dİ2021 215 $a1 online resource (1147 pages) 311 $a3-030-70671-0 327 $aIntro -- Foreword -- Preface -- Preface (First Edition) -- Contents -- Part I: Basic Concepts -- Chapter 1: Introduction to Thermal Spray -- 1.1 Introduction -- 1.2 Needs for Coatings -- 1.3 Thermal Spraying -- 1.4 Classification of Thermal Spray Processes -- 1.5 Historical Evolution of Thermal Spray Technology -- 1.6 Thermal Spray Applications -- 1.7 Overview of Book Content -- References -- Chapter 2: Overview of Surface Modification Technologies -- 2.1 Introduction -- 2.2 Coating Deposited at the Atomic Level -- 2.2.1 Plating -- 2.2.1.1 Electroless Plating -- 2.2.1.2 Electroplating -- 2.2.2 Physical Vapor Deposition -- 2.2.2.1 Evaporation by Resistive Heating -- 2.2.2.2 Electron and Ion Beam Vacuum Evaporator/Coating Systems -- 2.2.2.3 Sputtering -- 2.2.2.4 Pulsed Laser Deposition -- 2.2.3 Chemical Vapor Deposition -- 2.2.3.1 Low-Pressure Chemical Vapor Deposition -- 2.2.3.2 Plasma-Enhanced Chemical Vapor Deposition -- 2.2.3.3 Laser-Enhanced Chemical Vapor Deposition -- 2.2.4 Thin Film Coating Technologies in Industry -- 2.3 Thermal-Sprayed Coatings -- 2.3.1 Basic Concepts -- 2.3.1.1 Combustion-Based Processes -- 2.3.1.2 Plasma-Based Processes -- 2.3.2 Energetic Gas Flow Generation -- 2.3.2.1 Cold Spray -- 2.3.2.2 Flame Spray -- 2.3.2.3 Plasma Spraying -- 2.3.2.4 Plasma-Transferred Arc Deposition -- 2.3.3 Material Preparation and Injection -- 2.3.3.1 Powder Injection -- 2.3.3.2 Wire, Rod, or Cord Injection -- 2.3.3.3 Liquid Injection -- 2.3.4 Substrate Preparation -- 2.3.5 Coating Formation -- 2.3.6 Residual Stresses -- 2.3.7 Brief Descriptions of Thermal Spray Applications -- 2.4 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 3: Fundamentals of Combustion and Thermal Plasmas -- 3.1 Introduction -- 3.2 Combustion -- 3.2.1 Description of Combustion Processes. 327 $a3.2.2 Combustion at Equilibrium -- 3.2.3 Combustion Kinetics -- 3.2.3.1 One-Step Reactions -- 3.2.3.2 Simultaneous Interdependent and Chain Reactions -- 3.2.3.3 Criterion for Explosion -- 3.2.4 Combustion (Deflagrations) or Detonations -- 3.2.4.1 Combustion (Deflagration) -- 3.2.4.2 Detonation -- 3.3 Thermal Plasmas for Spraying -- 3.3.1 Comparison of Thermal Plasma and Combustion Spraying -- 3.3.2 Definition -- 3.3.3 Plasma Composition -- 3.3.4 Thermodynamic Properties -- 3.3.5 Transport Properties -- 3.3.5.1 Electrical Conductivity -- 3.3.5.2 Molecular Viscosity -- 3.3.5.3 Thermal Conductivity -- 3.4 Basic Concepts in Modeling of Plasma Spraying Processes -- 3.4.1 Introduction -- 3.4.2 Conservation Equations for the Modeling of Plasma Flows -- 3.4.2.1 Continuity Equations -- 3.4.2.2 Momentum Equations -- 3.4.2.3 Energy Equations -- 3.4.2.4 Electromagnetic Field Equations -- 3.4.2.5 Laminar or Turbulent Flows -- 3.4.3 Gas Composition, Thermodynamic, and Transport Properties -- 3.4.3.1 Gas Composition -- 3.4.3.2 Thermodynamic Properties -- 3.4.3.3 Transport Properties -- 3.4.4 Examples of DC Torch Modeling Results -- 3.5 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Mathematical Symbols -- Greek Alphabet -- References -- Chapter 4: Plasma-Particle Momentum and Heat Transfer -- 4.1 Introduction -- 4.2 Overview of Powder Characteristics -- 4.2.1 Individual Particle Size and Morphology -- 4.2.2 Particle Size-Distribution -- 4.3 Plasma-Particle Momentum Transfer -- 4.3.1 Flow around Single Sphere and Drag Coefficient -- 4.3.2 Corrections to the Drag Coefficient -- 4.3.2.1 Effect of the Temperature Gradients -- 4.3.2.2 Effect of Particle Shape -- 4.3.2.3 Non-continuum Effect -- 4.3.2.4 Effect of Particle Charging -- 4.4 Plasma-Particle Heat Transfer -- 4.4.1 Heat Transfer Coefficient -- 4.4.2 Corrections to the Heat Transfer Coefficient. 327 $a4.4.2.1 Effect of the Temperature Gradients -- 4.4.2.2 Non-continuum Effect -- 4.4.3 Radiation Energy Losses from the Surface of the Particle -- 4.5 Transient Heating and Melting of a Particle -- 4.5.1 Spherical Particle with Infinite Thermal Conductivity -- 4.5.2 Effect of Internal Heat Conduction -- 4.5.3 The Moving Boundary Problem -- 4.5.4 Transient Heating and Melting of Porous Spherical Particle -- 4.6 Particle Vaporization Under Plasma Conditions -- 4.6.1 Basic Mechanism of Particle Vaporization -- 4.6.2 Effect of Vaporization on Heat Transfer -- 4.6.3 Effect of Radiation on Particle Vaporization -- 4.6.4 Effect of Mass Transfer and Chemical Reactions -- 4.7 Chemical Reactions and Melt Circulation -- 4.7.1 Diffusion Controlled Reaction -- 4.7.2 Reactions Taking Place Between Condensed Phases -- 4.7.3 Reactions Controlled by Convection Within Liquid Phase -- 4.7.4 Nano- and Micrometer-Sized Particles and Coating Structures -- 4.8 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 5: Gas and Particle Dynamics in Thermal Spray -- 5.1 Introduction -- 5.2 Particle Injection in Plasma Spray -- 5.2.1 Design Considerations of Particle Injection Systems -- 5.2.2 Effect of Carrier Gas -- 5.3 Suspension or Solution Injection into Plasma Flows -- 5.3.1 Gas Atomization -- 5.3.2 Mechanical Atomization -- 5.3.2.1 Liquid Penetration into the Plasma Flow -- 5.3.2.2 Liquid Fragmentation -- 5.3.2.3 Droplets Fragmentation and Vaporization -- 5.3.2.4 Influence of Arc Root Fluctuations -- 5.3.3 Cooling of Plasma Flow by the Liquid -- 5.4 Particles and Droplets in Combustion and Thermal Plasmas -- 5.4.1 Flow and Temperature Fields in DC Plasma Jets -- 5.4.2 Particle Trajectories in DC Plasma Spraying -- 5.4.3 Flow and Temperature Fields in RF Induction Plasmas. 327 $a5.4.4 Particle Velocity Distributions in RF Plasma Spraying -- 5.5 Particle Trajectory and Temperature History -- 5.5.1 Model Formulation -- 5.5.2 Single Particles Motion in Combustion or Plasma Stream -- 5.5.2.1 Equations of Motion -- 5.5.2.2 In-Flight Particle Heating, Melting, and Evaporation -- 5.5.3 Particle Trajectory in Combustion and DC Plasmas -- 5.5.3.1 Influence of the Injection Conditions -- 5.5.3.2 Optimization of the Injection -- 5.5.3.3 Influence of Plasma Jet Fluctuations -- 5.5.4 Trajectory Corrections Due to Various Effects -- 5.5.4.1 Effect of Temperature Gradient -- 5.5.4.2 Effect of Rarefaction and Vaporization -- 5.5.4.3 Effect of Turbulence -- 5.5.4.4 Thermophoresis Effect -- 5.5.4.5 Other Effects -- 5.5.5 Particle Trajectory in Induction Plasmas -- 5.6 Plasma-Particle Interactions Under Dense Loading Conditions -- 5.7 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Part II: Thermal Spray Technologies -- Chapter 6: Cold Spray -- 6.1 Introduction -- 6.2 Overview of Cold Spray Technologies -- 6.2.1 Conventional Cold Spray -- 6.2.2 Kinetic Spray -- 6.2.3 Pulsed-Gas Dynamic Spray -- 6.2.4 Low Pressure Cold Spray -- 6.2.5 Vacuum Cold Spray -- 6.2.6 Laser-Assisted Cold-Spray -- 6.3 Gas Dynamics in Cold Spray Process -- 6.3.1 Isentropic Expansion of the Flow -- 6.3.2 Compressible Flow Models -- 6.3.3 Nozzle Design -- 6.4 Coating Formation -- 6.4.1 Induction Time -- 6.4.2 Particle and Substrate Deformation -- 6.4.3 Critical Impact Velocity -- 6.4.4 Material and Substrate Compatibility -- 6.4.5 Particle Shock Consolidation -- 6.4.6 Coating Buildup -- 6.4.7 Deposition Efficiency -- 6.5 Deposition Parameters -- 6.5.1 Spray Gases -- 6.5.2 Spray Powders -- 6.5.2.1 General Remarks -- 6.5.2.2 Influence of Particle Diameter, Density, and Specific Heat -- 6.5.2.3 Particle Temperature. 327 $a6.5.2.4 Composite Materials -- 6.5.2.5 Metal-Ceramic Blends -- 6.5.2.6 Metal-Cladded Composite Particles -- 6.5.2.7 Nano Composites -- 6.5.3 Substrate -- 6.5.3.1 Substrate Roughness -- 6.5.3.2 Spray Distance -- 6.5.3.3 Spray Angle -- 6.5.3.4 Substrate Oxidation -- 6.5.3.5 Laser Preheating of the Substrate -- 6.5.4 Nozzle Design and Powder Injection -- 6.5.4.1 Carrier Gas -- 6.5.4.2 Critical Velocity -- 6.5.4.3 Particle Loading Effect -- 6.6 Coating Materials and Process Applications -- 6.6.1 General Remarks -- 6.6.2 Metals -- 6.6.2.1 Aluminum -- 6.6.2.2 Copper -- 6.6.2.3 Nickel -- 6.6.2.4 Selective Galvanizing -- 6.6.2.5 Superalloys -- 6.6.2.6 Titanium and TiO2 and TiN -- 6.6.2.7 Iron and Steel -- 6.6.2.8 Tantalum -- 6.6.2.9 Pure Silicon -- 6.6.2.10 Pure Silver -- 6.6.2.11 Metallic Coatings on Polymers -- 6.6.2.12 Complex Alloys -- 6.6.2.13 Submicronic Ceramic Powders -- 6.6.3 Composites -- 6.6.3.1 Pure Iron (99.5%) or Stainless Steel (304 L) Reinforced by Diamond -- 6.6.3.2 Aluminum and Copper -- 6.6.3.3 Aluminum and Silicon -- 6.6.3.4 Fabrication of Cermet Coatings -- 6.6.3.5 Fe-Al Inter-Metallic Compounds -- 6.6.3.6 Cermets -- 6.6.3.7 Ceramics -- 6.7 Immerging Technologies and Applications of Cold Spray -- 6.7.1 Low Pressure Cold Spray (LPCS) -- 6.7.2 Additive Manufacturing -- 6.8 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 7: Combustion Spraying -- 7.1 Overview of Combustion-Based Spray Technologies -- 7.2 Flame Spraying -- 7.2.1 Basic Concepts -- 7.2.2 Powder Flame Spraying -- 7.2.2.1 Spray Gun Design and Process Characteristics -- 7.2.2.2 Applications -- 7.2.3 Solution Flame Spraying (SFS) -- 7.2.4 Wire, Rod, and Cord Spraying -- 7.2.4.1 Spray Gun Design and Process Characteristics -- 7.2.4.2 Applications -- 7.3 High-Velocity Flame Spraying -- 7.3.1 Basic Concepts. 327 $a7.3.1.1 Spray Gun Design and Process Characteristics. 606 $aMetal spraying 615 0$aMetal spraying. 676 $a660.283 700 $aBoulos$b Maher I.$0905440 702 $aFauchais$b Pierre 702 $aHeberlein$b J. V$g(Joachim Viktor), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910506378303321 996 $aThermal spray fundamentals$92899832 997 $aUNINA