LEADER 01271nam0-2200313 --450 001 9910511205303321 005 20211215122312.0 010 $a2503605923 100 $a20211215d1984----kmuy0itay5050 ba 101 $alat$afre 102 $aBE 105 $a 001yy 200 1 $aBeatus Liebanensis et Eterius Oxomensis$eAdversus Elipandum libri duo$fcurante CETEDOC, Universitas catholica Lovaniensis, Lovanii Novi 210 $aTurnhout$cBrepols$d1984 215 $a54 p.$d26 cm$e6 microfiches 225 1 $aCorpus Christianorum. Instrumenta lexicologica Latina. Ser. A, Formae$v19 300 $aSpoglio lessicale. 430 0$1001IT\ICCU\VIA\0037543$12001$aBeati Liebanensis et Eterii Oxomensis Adversus Elipandum libri duo$fedidit Bengt Lofstedt 610 0 $aCorpus christianorum 702 0$aBeato : de Liébana$c 702 0$aEterius : Oxomensis 710 02$aUniversité catholique$c$b: Centre de traitement éléctronique des documents$4070$0384867 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910511205303321 952 $a870.308 CH CORP. CHRIST. 59 (a 19)$b58679$fFLFBC 959 $aFLFBC 996 $aBeatus Liebanensis et Eterius Oxomensis$92552961 997 $aUNINA LEADER 01352nam a2200373 i 4500 001 991000775129707536 005 20020507173425.0 008 940622s1984 us ||| | eng 020 $a0126854807 035 $ab10755469-39ule_inst 035 $aLE01302120$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.353 084 $aAMS 35K 084 $aAMS 65M 084 $aAMS 65N 084 $aQA377.T43 100 1 $aTeo, K. L.$014369 245 10$aComputational methods for optimizing distributed systems /$cK. L. Teo, Z. S. Wu 260 $aOrlando :$bAcademic Press,$c1984 300 $axiii, 317 p. ;$c24 cm 490 0 $aMathematics in science and engineering.$pA series of monographs and textbooks,$x0076-5392 ;$v173 500 $aBibliography: p. 301-312. 500 $aIncludes index 650 0$aBoundary value problems 650 0$aDistributed parameter systems 650 0$aParabolic differential equations-numerical solutions 700 1 $aWu, Z. S. 907 $a.b10755469$b23-02-17$c28-06-02 912 $a991000775129707536 945 $aLE013 65M TEO11 (1984)$g1$i2013000142067$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10849683$z28-06-02 996 $aComputational methods for Optimizing distributed systems$9119662 997 $aUNISALENTO 998 $ale013$b01-01-94$cm$da $e-$feng$gus $h0$i1