LEADER 09781nam 2200553 450 001 9910508483703321 005 20230630193859.0 010 $a3-030-80674-X 035 $a(CKB)5470000001298891 035 $a(MiAaPQ)EBC6796432 035 $a(Au-PeEL)EBL6796432 035 $a(OCoLC)1282004196 035 $a(PPN)258302208 035 $a(EXLCZ)995470000001298891 100 $a20220723d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCompatible solutes engineering for crop plants facing climate change /$fShabir Hussain Wani, Manu Pratap Gangola, Bharathi Raja Ramadoss, editors 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (270 pages) 300 $aIncludes index. 311 $a3-030-80673-1 327 $aIntro -- Foreword -- Contents -- Chapter 1: Recent Advances in Plant Adaptation to Climate Change - An Introduction to Compatible Solutes -- 1.1 Introduction -- 1.2 An Overview of Compatible Solutes Functions in Plants -- 1.3 Role of Compatible Solutes in Tolerating Abiotic Stress in Plants -- 1.4 Physiological Response of Compatible Solutes in Adaptation to Climate Changes -- 1.5 Enhancing Synthesis of Compatible Solutes Through Genetic Engineering -- 1.6 Conclusion and Future Prospects of Compatible Solutes in Adapting Climate Changes in Plants -- References -- Chapter 2: Osmosensing and Signalling in Plants: Potential Role in Crop Improvement Under Climate Change -- 2.1 Introduction -- 2.2 Lexicon and Conception of Plant Osmosensing -- 2.3 Probe of Plant Osmosensors -- 2.3.1 Two-Component System or Membrane-Localized Kinases -- 2.3.2 Mechanosensitive (MS) Channels -- 2.3.3 Phospholipase C -- 2.3.4 Observation of the Cell Wall and Receptor-like Kinases (RLKs) -- 2.3.5 Aquaporins -- 2.4 Molecular Mechanism of Osmosensing: An Overview -- 2.4.1 Osmotic Imbalances Across Cell Membrane -- 2.4.2 Increased Cell Membrane Tension -- 2.4.3 Changed Integrity of the Cell Wall -- 2.5 Osmotic Stress Perception, Sensing, and Signalling in Plants -- 2.6 Potential Role in Crop Improvement Under Climate Change -- 2.7 Conclusion -- References -- Chapter 3: Amino Acids Other Than Proline and Their Participation in Abiotic Stress Tolerance -- 3.1 Introduction -- 3.2 Drought and Salinity Tolerance -- 3.2.1 Endogenous Accumulation -- 3.2.2 Amino Acid Biosynthetic Genes and Their Use in Engineering Plant Drought and Salt Tolerance -- 3.2.3 Exogenous Application -- 3.3 Temperature Stress Tolerance -- 3.3.1 Endogenous Accumulation -- 3.3.2 Amino Acid Biosynthetic Genes and Their Use in Engineering Plant Heat and Cold Tolerance -- 3.3.3 Exogenous Application. 327 $a3.4 Tolerance to Other Abiotic Stresses -- 3.4.1 Endogenous Accumulation -- 3.4.2 Amino Acid Biosynthetic Genes and Their Use in Engineering Plant Tolerance to Other Abiotic Stresses -- 3.4.3 Exogenous Application -- 3.5 Amino Acid-Based Biostimulants and Abiotic Stress Tolerance -- 3.6 Concluding Remarks -- References -- Chapter 4: Engineering Glycine Betaine Biosynthesis in Alleviating Abiotic Stress Effects in Plants -- 4.1 Introduction -- 4.2 Osmoprotectants -- 4.2.1 Mechanism of Osmoprotectant Action -- 4.2.2 Osmoprotectant Accumulation in Response to Adverse Environmental Conditions -- 4.2.2.1 Proline -- 4.2.2.2 GB and Polyamines -- 4.2.2.3 Sugar and Sugar Alcohols -- Mannitol -- Trehalose -- 4.3 Glycine Betaine -- 4.3.1 Biosynthesis of GB -- 4.3.1.1 Comparative Analysis of the GB Biosynthetic Pathway -- 4.3.2 Glycine Betaine: Targets for Metabolic Engineering Toward Enhancing Stress Tolerance -- 4.3.2.1 Exogenous Application of GB -- 4.3.2.2 Spatial and Temporal Distribution of GB in Plants Under Abiotic Stress -- 4.3.2.3 GB Biosynthetic Genes Tailored for Improved Plant Stress Tolerance -- 4.3.3 Transgenic Plants Engineered to Synthesize GB for Enhanced Tolerance to Stress -- 4.3.3.1 Rice (Oryza sativa) -- 4.3.3.2 Arabidopsis thaliana -- 4.3.3.3 Tobacco (Nicotiana tabacum) -- 4.3.3.4 Potato (Solanum tuberosum) -- 4.3.3.5 Wheat (Triticum aestivum) -- 4.3.3.6 Maize (Zea mays) -- 4.3.3.7 Tomato (Lycopersicon esculentum) -- 4.3.4 Mechanisms of Protection Against the Damaging Effects of Stress -- 4.3.4.1 Protective Effect of GB in Reproductive Organs of Plants Under Abiotic Stress -- 4.3.4.2 Protection of the Photosynthetic Machinery and Detoxification of ROS During Abiotic Stress -- 4.3.5 GB-Induced Expression of Specific Genes -- 4.4 Limitations to the Engineering of the GB Biosynthetic Pathway -- 4.5 Methods to Overcome Limitations. 327 $a4.6 Conclusion -- 4.7 Future Prospects -- References -- Chapter 5: Improvement of Abiotic Stress Tolerance by Modulating Polyamine Pathway in Crop Plants -- 5.1 Introduction -- 5.2 Different Form and Types of Polyamines -- 5.3 Polyamines Biosynthetic Pathways in Plants -- 5.4 Polyamines Catabolism -- 5.5 The Functional Role of Polyamines at the Cellular Level and During the Developmental Stage -- 5.6 Role of Polyamines Within Plants During Abiotic Stress -- 5.6.1 Functional Role During High-Temperature Stress -- 5.6.2 Functional Role During Cold and Chilling Stress -- 5.6.3 Functional Role During Water and Drought Stress -- 5.7 Genetic Engineering of Polyamines Pathways for Abiotic Stress Tolerance -- 5.8 Conclusion and Future Perspectives -- References -- Chapter 6: Engineering Fructan Biosynthesis Against Abiotic Stress -- 6.1 Introduction -- 6.2 What Is Abiotic Stress? -- 6.2.1 Drought Stress -- 6.2.2 Heat Stress -- 6.2.3 Chilling Stress -- 6.2.4 Salt Stress -- 6.2.5 Heavy Metal Toxicity -- 6.2.5.1 Cadmium (Cd) -- 6.2.5.2 Mercury (Hg) -- 6.2.5.3 Lead (Pb) -- 6.2.5.4 Arsenic (As) -- 6.2.6 Oxidative Stress -- 6.2.7 Signal Transduction Pathways -- 6.3 Mechanism Evolved by the Plants to Combat Abiotic Stress -- 6.4 Molecular Mechanisms of Plants During the Abiotic Stress -- 6.5 Sugar and Its Role in Growth and Development as Well as Abiotic Stress -- 6.5.1 Sugar Response to Abiotic Stress -- 6.5.2 Sugar-Associated Gene Regulation in the Abiotic Stress -- 6.5.3 Fructan and Its Biosynthesis Mechanism and Metabolism -- 6.5.3.1 Biosynthesis of Fructan -- 6.5.3.2 Role of Fructan in Different Forms of Abiotic Stress -- 6.6 Fructan Bioengineering -- 6.7 Breeding Approaches -- 6.8 Examples of the Utilization of Genes in the Crop Improvement Program -- 6.9 Transgenic Approaches -- 6.10 Conclusion and Prospects -- References. 327 $aChapter 7: The ?-Aminobutyric Acid (GABA) Towards Abiotic Stress Tolerance -- 7.1 Introduction -- 7.2 GABA Shunt and GABA Metabolism -- 7.3 GABA: Significance Under Abiotic Environmental Constraints -- 7.3.1 Salt Stress -- 7.3.2 Drought Stress -- 7.3.3 Temperature Stress -- 7.3.4 Heavy Metal Stress -- 7.4 Conclusion and Prospects -- References -- Chapter 8: Sugar Alcohols and Osmotic Stress Adaptation in Plants -- 8.1 Introduction -- 8.2 Sugar Alcohols (Polyols) -- 8.2.1 Mannitol or Mannitol -- 8.2.2 Sorbitol -- 8.2.3 Inositol or Myo-Inositol -- 8.3 Metabolism of Sugar Alcohols -- 8.4 Osmotic Stress in Plants -- 8.5 Sugar Alcohols in Osmotic Stress Adaptation -- 8.6 Sugar Alcohols in Transformation Studies -- 8.7 Conclusion and Future Outlook -- References -- Chapter 9: Cross-talk of Compatible Solutes with Other Signalling Pathways in Plants -- 9.1 Introduction -- 9.2 Signalling Cascades for Osmolytes Production -- 9.3 Compatible Solutes -- 9.4 Molecular Mechanism to Understand Cross-Talk -- 9.4.1 Glycine Betaine Biosynthesis -- 9.5 Glycine Betaine and Hormone Response -- 9.6 Proline Biosynthesis -- 9.7 Proline and Hormone Response -- 9.8 Ethylene Role in Stress Signalling -- 9.9 Carbohydrates -- 9.10 Sugar as a Signalling Molecule -- 9.11 Amino Acids -- 9.12 Gamma-Aminobutyric Acid (GABA) -- 9.13 Conclusions -- References -- Chapter 10: Effect and Importance of Compatible Solutes in Plant Growth Promotion Under Different Stress Conditions -- 10.1 Introduction -- 10.2 Plant Growth and Stress -- 10.3 Stress and Its Types -- 10.3.1 Abiotic Stressors of Plants -- 10.3.2 Cold or Freezing -- 10.3.3 Drought Stress -- 10.3.4 Salt Stress -- 10.3.5 Heat Stress -- 10.3.6 Plant Under Biotic Stress -- 10.4 Role of Compatible Solute on the Growth of the Plant in Stress -- 10.5 Types of Compatible Solutes -- 10.5.1 Amino Acid -- 10.5.2 Sugars. 327 $a10.5.3 Phosphodiester -- 10.5.4 Polyols -- 10.6 Conclusion -- References -- Chapter 11: Compatible Solute Engineering: An Approach for Plant Growth Under Climate Change -- 11.1 Introduction -- 11.2 Compatible Solutes -- 11.3 Polyols -- 11.4 Different Approaches Involved in Engineering -- 11.5 Role of Compatible Solutes in Plant Growth -- 11.6 Effect of Climate Change on Plant Growth -- 11.7 Role of Compatible Solutes Engineering in Plant Growth under Climatic Stress -- 11.8 Disadvantages -- 11.9 Future Prospects -- 11.10 Conclusion -- References -- Index. 606 $aPlant breeding 606 $aDesenvolupament de les plantes$2thub 606 $aCanvi climàtic$2thub 608 $aLlibres electrònics$2thub 615 0$aPlant breeding. 615 7$aDesenvolupament de les plantes 615 7$aCanvi climàtic 676 $a631.52 702 $aWani$b Shabir Hussain 702 $aGangola$b Manu Pratap 702 $aRamadoss$b Bharathi Raja 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910508483703321 996 $aCompatible solutes engineering for crop plants facing climate change$92901102 997 $aUNINA