LEADER 01778nam 2200445I 450 001 9910706207403321 005 20171106075309.0 035 $a(CKB)5470000002456368 035 $a(OCoLC)1009516552 035 $a(EXLCZ)995470000002456368 100 $a20171106d2016 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe role of technology in youth harassment victimization /$fwritten by Kimberly J. Mitchell, Ph.D, [and four others] 210 1$a[Washington, D.C.] :$cU.S. Department of Justice, Office of Justice Programs, National Institute of Justice, Office of Juvenile Justice and Delinquency Prevention,$d2016. 215 $a1 online resource (12 pages) $cillustrations 300 $a"November 2016." 300 $a"This bulletin discusses key findings from the Technology Harassment Victimization study that the National Institute of Justice sponsored." 320 $aIncludes bibliographic references (pages 11-12). 517 1 $aJustice research 606 $aCyberbullying$zUnited States 606 $aInternet and teenagers$zUnited States 606 $aVictims of crimes surveys$zUnited States 606 $aBullying$zUnited States 615 0$aCyberbullying 615 0$aInternet and teenagers 615 0$aVictims of crimes surveys 615 0$aBullying 700 $aMitchell$b Kimberly J.$01410077 712 02$aUnited States.$bOffice of Juvenile Justice and Delinquency Prevention, 712 02$aNational Institute of Justice (U.S.), 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910706207403321 996 $aThe role of technology in youth harassment victimization$93498030 997 $aUNINA LEADER 12189nam 22006975 450 001 9910508449303321 005 20251113195054.0 010 $a3-030-68472-5 024 7 $a10.1007/978-3-030-68472-3 035 $a(CKB)5470000001298833 035 $a(MiAaPQ)EBC6796337 035 $a(Au-PeEL)EBL6796337 035 $a(OCoLC)1281767987 035 $a(PPN)258300906 035 $a(DE-He213)978-3-030-68472-3 035 $a(EXLCZ)995470000001298833 100 $a20211029d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplied Polymer Science /$fby Ulf W. Gedde, Mikael S. Hedenqvist, Minna Hakkarainen, Fritjof Nilsson, Oisik Das 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (555 pages) 225 1 $aChemistry and Materials Science Series 311 08$a3-030-68471-7 327 $aIntro -- Preface -- Contents -- Chapter 1: Thermal Analysis of Polymers -- 1.1 Introduction -- 1.2 Thermo-analytical Methods -- 1.2.1 Differential Thermal Analysis and Differential Scanning Calorimetry -- 1.2.2 Thermogravimetry -- 1.2.3 Dilatometry and Thermomechanical Analysis -- 1.2.4 Dynamic Mechanical Thermal Analysis -- 1.2.5 Thermal Optical Analysis and In Situ Structural Assessment Under Controlled Thermal History -- 1.2.6 Dielectric Thermal Analysis (DETA) -- 1.3 Thermal Behaviour of Polymers -- 1.3.1 Semicrystalline Polymers -- 1.3.2 Amorphous Polymers -- 1.3.3 Liquid Crystalline Polymers -- 1.3.4 Polymer Degradation -- 1.3.5 Further Applications of Thermal Analysis in Polymer Science and Technology -- 1.4 Summary -- 1.5 Exercises -- References -- Chapter 2: Microscopy of Polymers -- 2.1 Introduction -- 2.2 Optical Microscopy -- 2.2.1 Fundamentals -- 2.2.2 Polarized Microscopy and Related Techniques -- 2.3 Electron Microscopy -- 2.4 Atomic Force Microscopy and Related Techniques -- 2.5 Novel Techniques in Polymer Microscopy -- 2.6 Preparation of Specimens for Microscopy -- 2.6.1 Preparation of Samples for Optical Microscopy -- 2.6.2 Preparation of Samples for Scanning Electron Microscopy -- 2.6.3 Preparation of Samples for Transmission Electron Microscopy -- 2.6.4 Preparation of Samples for Atomic Force Microscopy -- 2.6.5 Artificial Structures -- 2.7 Applications of Microscopy in Polymer Science and Engineering -- 2.7.1 Semicrystalline Polymers -- 2.7.2 Liquid Crystalline (LC) Polymers -- 2.7.3 Polymer Blends -- 2.7.4 Composites Including Nanocomposites -- 2.7.5 Native Polymers and Polymeric Biomaterials -- 2.8 Summary -- 2.9 Exercises -- References -- Chapter 3: Spectroscopy and Scattering of Radiation by Polymers -- 3.1 Introduction -- 3.2 Vibrational Spectroscopy -- 3.2.1 Fundamentals -- 3.2.2 IR and Raman Spectrophotometers. 327 $a3.2.3 Quantitative Analysis -- 3.2.4 Sample Preparation -- 3.2.5 Applications of Vibrational Spectroscopy -- 3.3 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 3.3.1 Fundamentals -- 3.3.2 Instrumentation -- 3.3.3 Polymer Applications of NMR Spectroscopy -- 3.4 Other Spectroscopic Methods -- 3.4.1 X-ray Photoelectron Spectroscopy (XPS) -- 3.4.2 Electron Spin Resonance Spectroscopy -- 3.4.3 UV-VIS Spectroscopy -- 3.5 Scattering Methods -- 3.5.1 Light Scattering -- 3.5.2 Wide-Angle X-ray Scattering -- 3.5.3 Small-Angle X-ray Scattering -- 3.5.4 Electron Diffraction -- 3.5.5 Neutron Scattering -- 3.6 Summary -- 3.7 Exercises -- References -- Chapter 4: Chromatographic Analysis of Polymers -- 4.1 Introduction -- 4.2 General Concepts in Chromatography -- 4.3 Size Exclusion Chromatography -- 4.3.1 Molar Mass and Molar Mass Distribution -- 4.3.2 Principles of SEC Systems -- 4.3.3 Separation in the SEC Column -- 4.3.4 Detection of the Eluting Molecules -- 4.3.5 Relative Narrow Standard Calibration -- 4.3.6 Universal Calibration -- 4.3.7 Sample Preparation for SEC -- 4.3.8 Molar Mass Averages from SEC Chromatograms -- 4.3.9 Development of New Coupled SEC Systems -- 4.4 High-Performance Liquid Chromatography -- 4.4.1 Principles of an HPLC System -- 4.4.2 Separation Modes in HPLC -- 4.5 Gas Chromatography -- 4.5.1 Principles of a GC System -- 4.5.2 Integrating GC with Mass Spectrometry (MS) -- 4.6 Qualitative and Quantitative Analysis by HPLC and GC -- 4.7 Sample Preparation Before GC or HPLC Analysis -- 4.8 Application of GC and HPLC for the Analysis of Polymers -- 4.9 Summary -- 4.10 Exercises -- References -- Chapter 5: Simulation and Modelling of Polymers -- 5.1 Introduction -- 5.2 Quantum Chemistry (QC) -- 5.2.1 QC: Overview -- 5.2.2 Computational Quantum Mechanics: Formalism -- 5.2.3 Molecular Orbital (MO) Methods, One-Electron Technique. 327 $a5.2.4 Molecular Orbital (MO) Methods, Many-Electron Technique -- 5.2.5 Semi-empirical MO Methods -- 5.2.6 Ab Initio Methods -- 5.2.7 Density Functional Theory (DFT) -- 5.3 Molecular Dynamics (MD) -- 5.3.1 MD: Overview -- 5.3.2 Force-Field Potentials -- 5.3.3 Coarse-Graining -- 5.3.4 The Basic MD Algorithm -- 5.3.5 Ensembles -- 5.3.6 The Phase Space -- 5.3.7 A Practical MD Example: Diffusion -- 5.4 Monte Carlo Methods (MC) -- 5.4.1 MC: Overview -- 5.4.2 Importance Sampling: Metropolis Hastings and Biased Sampling -- 5.4.3 Macromolecular Starting Configurations with MC -- 5.4.4 Macromolecular Energy Minimization with MC -- 5.5 Mesoscale Modelling, Including Dissipative Particle Dynamics -- 5.6 Statistical Methods, Including Group-Contribution Methods -- 5.7 The Finite Element Method (FEM) -- 5.7.1 FEM: Introduction -- 5.7.2 Applied FEM -- 5.7.3 FEM: Mathematical Background -- 5.8 Summary -- 5.9 Exercises -- References -- Chapter 6: Mechanical Properties -- 6.1 Introduction -- 6.2 Stress -- 6.2.1 Normal stress and Shear Stress -- 6.2.2 The Stress Tensor -- 6.2.3 The Mohr Stress Circle -- 6.3 Strain -- 6.3.1 Introduction: Uniaxially Loaded Specimens -- 6.3.2 The Strain Tensor and Other Strain Concepts -- 6.3.3 The Mohr Strain Circle -- 6.4 Assessment of the Mechanical Properties -- 6.4.1 Introduction -- 6.4.2 Tensile Testing -- 6.4.3 Dynamic Mechanical Analysis, Dilatometry and Thermal Mechanical Analysis -- 6.4.4 Fracture Testing -- 6.4.5 Surface Mechanics Methods -- 6.5 Definition of Mechanical Parameters from the Tensile Test -- 6.5.1 The Stress-Strain Curve -- 6.5.2 The Stiffness and the Tensile Modulus -- 6.6 The Three-Dimensional View for Modulus and Strain -- 6.7 Energy During Deformation -- 6.7.1 Energy Stored During Elastic Deformation -- 6.7.2 Energy Transformed During Viscous Flow and Viscoelastic Deformation. 327 $a6.8 Oriented Polymers and Multiaxial Stresses -- 6.9 Linear Viscoelasticity -- 6.9.1 The Spring and the Dashpot -- 6.9.2 The Maxwell (iso-Stress) Element -- 6.9.3 The Voigt-Kelvin (iso-Strain) Element -- 6.9.4 The Burgers Element and Other Linear Viscoelastic Models -- 6.10 Correlations Between Stress Relaxation and Dynamic Mechanical Data -- 6.10.1 From Stress Relaxation Modulus to Dynamic Mechanical Modulus -- 6.10.2 From Dynamic Mechanical Modulus to Dynamic Mechanical Compliance -- 6.11 Boltzmann Superposition Principle -- 6.12 The Influence of Strain Rate on the Viscoelastic Properties -- 6.13 The Influence of Temperature on the Viscoelastic Properties: Time-Temperature Shifting and Superposition -- 6.14 Non-linear Viscoelasticity as Illustrated with Creep Behaviour -- 6.15 Short-Term Mechanical Properties of Selected Polymers -- 6.16 Rubber Elasticity -- 6.17 Some Examples of Parameters Affecting the Mechanical Properties -- 6.18 Yielding of Polymers -- 6.18.1 Introduction -- 6.18.2 Theories of Yielding in Amorphous Polymers -- 6.18.3 Yielding in Semicrystalline Polymers -- 6.19 Fracture of Polymers -- 6.19.1 Introduction and the Brittle-Ductile Transition -- 6.19.2 Fracture Mechanics -- 6.19.3 Ductile Failure -- 6.19.4 Creep Failure -- 6.19.5 Impact Failure -- 6.19.6 Dynamic Fatigue Failure -- 6.20 Cellulose Fibre Systems and Related Materials -- 6.21 Summary -- 6.22 Exercises -- References -- Chapter 7: Transport Properties of Polymers -- 7.1 Introduction -- 7.2 Diffusion -- 7.2.1 Basics of the Random Walk -- 7.2.2 The Velocity Autocorrelation Function -- 7.2.3 Diffusion -- Temperature and Solute Size -- 7.3 Solubility -- 7.4 Fick´s Laws of Diffusion -- 7.5 Methods of Solution of the Diffusion Equation -- 7.6 Transport Properties of Elastomers and Melts -- 7.6.1 Introduction -- 7.6.2 Models of Diffusion in Elastomers. 327 $a7.6.2.1 Molecular Models -- 7.6.2.2 Free Volume Models -- 7.7 Transport Properties of Semicrystalline Polymers -- 7.7.1 Geometrical Effects of Crystals -- 7.7.2 Molecular Constraints -- 7.8 Concentration-Dependent Diffusivity and Swelling in Flexible Polymers -- 7.9 Transport Properties of Glassy Polymers -- 7.9.1 Introduction -- 7.9.2 Dual Solubility Model -- 7.9.3 The Dual Mobility Model -- 7.9.4 Anomalous and Case II Diffusion -- 7.10 Barriers and Membranes -- 7.10.1 Barriers -- 7.10.2 Membrane Separation -- 7.10.2.1 Liquid Separation -- 7.10.2.2 Gas Separation -- 7.11 Techniques for Measuring Permeability, Diffusivity and Solubility -- 7.12 Heat Transfer -- 7.12.1 The Heat Equations -- 7.12.2 Surface Boundary Heat Conditions -- 7.13 Summary -- 7.14 Exercises -- References -- Chapter 8: Processing of Polymeric Materials -- 8.1 Introduction -- 8.2 Polymer Processing: A Complex Applied Polymer Science Discipline -- 8.3 Compounding -- 8.4 Injection Moulding -- 8.5 Extrusion and Associated Techniques -- 8.6 Thermoforming -- 8.7 Producing Hollow Objects: Rotational Moulding and Blow Moulding -- 8.8 Compression Moulding -- 8.9 Calendering -- 8.10 Additive Manufacturing -- 8.10.1 Steps in the Development of Digital Model -- 8.10.2 3D Printing Methods for Polymers -- 8.11 Summary -- 8.12 Exercises -- References -- Chapter 9: Plastics and Sustainability -- 9.1 Introduction -- 9.2 Contribution of Plastics to Sustainable Society -- 9.3 Bio-based Materials -- 9.3.1 Thermoplastic Materials Derived from Bio-based Monomers -- 9.3.2 Biopolymer-Based or Biopolymer-Derived Thermoplastics -- 9.3.3 Bio-based Thermosets and Coatings -- 9.3.4 Production of Polymers from Waste-Greenhouse Gases -- 9.3.5 Challenges and Opportunities for Bio-based Materials -- 9.4 End-of-Life Management: From Waste to Resource -- 9.4.1 Polymer Loop: Mechanical Recycling. 327 $a9.4.2 Monomer and Molecule Loops: Chemical Recycling. 330 $aThis companion volume to ?Fundamental Polymer Science? (Gedde and Hedenqvist, 2019) offers detailed insights from leading practitioners into experimental methods, simulation and modelling, mechanical and transport properties, processing, and sustainability issues. Separate chapters are devoted to thermal analysis, microscopy, spectroscopy, scattering methods, and chromatography. Special problems and pitfalls related to the study of polymers are addressed. Careful editing for consistency and cross-referencing among the chapters, high-quality graphics, worked-out examples, and numerous references to the specialist literature make ?Applied Polymer Science? an essential reference for advanced students and practicing chemists, physicists, and engineers who want to solve problems with the use of polymeric materials. . 410 0$aChemistry and Materials Science Series 606 $aSoft condensed matter 606 $aPolymers 606 $aMaterials$xAnalysis 606 $aSpectrum analysis 606 $aSoft and Granular Matter 606 $aPolymers 606 $aCharacterization and Analytical Technique 606 $aSpectroscopy 615 0$aSoft condensed matter. 615 0$aPolymers. 615 0$aMaterials$xAnalysis. 615 0$aSpectrum analysis. 615 14$aSoft and Granular Matter. 615 24$aPolymers. 615 24$aCharacterization and Analytical Technique. 615 24$aSpectroscopy. 676 $a668.9 700 $aGedde$b U. W$g(Ulf W.),$0460034 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910508449303321 996 $aApplied polymer science$92901705 997 $aUNINA