LEADER 01044nam0-2200301 --450 001 9910508098903321 005 20211203155641.0 010 $a978-88-361-3008-5 100 $a20211203d2020----kmuy0itay5050 ba 101 2 $aita$aspa$cspa 102 $aIT 105 $ay 001yy 200 1 $aHistoria troyana$eversos$fa cura di Marcello Barbato 210 $aAlessandria$cEdizioni dell'Orso$d2020 215 $a210 p.$d20 cm 225 1 $a<>orsatti$etesti per un altro Medioevo$v45 300 $aTrascrizione dei manoscritti 10146 conservato presso la Biblioteca nacional de Espaņa e L.II.16 conservato presso la Real Biblioteca del Monasterio de San Lorenzo di El Escorial 300 $aTraduzione italiana a fronte 312 $aTraduzione parziale 676 $a849.911$v23 702 1$aBarbato,$bMarcello$f<1969- > 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910508098903321 952 $a861.1 BAR 1$b2021/2320$fFLFBC 959 $aFLFBC 996 $aHistoria troyana$91556144 997 $aUNINA LEADER 04833nam 2200673Ia 450 001 9910830470903321 005 20180612233939.0 010 $a1-281-08802-1 010 $a9786611088026 010 $a3-527-61155-X 010 $a3-527-61156-8 035 $a(CKB)1000000000376993 035 $a(EBL)481879 035 $a(OCoLC)181369115 035 $a(SSID)ssj0000222464 035 $a(PQKBManifestationID)11910868 035 $a(PQKBTitleCode)TC0000222464 035 $a(PQKBWorkID)10174173 035 $a(PQKB)11074432 035 $a(MiAaPQ)EBC481879 035 $a(PPN)243027893 035 $a(EXLCZ)991000000000376993 100 $a20070926d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPlasma-aided nanofabrication$b[electronic resource] $efrom plasma sources to nanoassembly /$fKostya (Ken) Ostrikov and Shuyan Xu 210 $aWeinheim $cWiley-VCH$dc2007 215 $a1 online resource (317 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40633-6 320 $aIncludes bibliographical references and index. 327 $aPlasma-Aided Nanofabrication; Contents; Preface; 1 Introduction; 1.1 What is a Plasma?; 1.2 Relevant Issues of Nanoscience and Nanotechnology; 1.3 Plasma-Assisted Synthesis of Nanomaterials; 1.4 How to Choose the Right Plasma for Applications in Nanotechnology?; 1.5 Structure of the Monograph and Advice to the Reader; 2 Generation of Highly Uniform, High-Density Inductively Coupled Plasma; 2.1 Low-Frequency ICP with a Flat External Spiral Coil: Plasma Source and Diagnostic Equipment; 2.1.1 Plasma Source; 2.1.2 Diagnostics of Inductively Coupled Plasmas 327 $a3 Plasma Sources: Meeting the Demands of Nanotechnology3.1 Inductively Coupled Plasma Source with Internal Oscillating Currents: Concept and Experimental Verification; 3.1.1 Configuration of the IOCPS; 3.1.2 RF Power Deposition; 3.1.3 Plasma Parameters; 3.2 IOCPS: Stability and Mode Transitions; 3.2.1 Optical Emission; 3.2.2 Self-Transitions of the IOCPS Discharge Modes; 3.3 ICP-Assisted DC Magnetron Sputtering Device; 3.3.1 Enhancement of DC Magnetron Sputtering by an Inductively Coupled Plasma Source; 3.3.2 Mode Transitions in ICP-Assisted Magnetron Sputtering Device 327 $a3.4 Integrated Plasma-Aided Nanofabrication Facility3.5 Concluding Remarks; 4 Carbon-Based Nanostructures; 4.1 Growth of Carbon Nanostructures on Unheated Substrates; 4.1.1 Process Details; 4.1.2 Synthesis, Characterization, and Growth Kinetics; 4.2 Temperature-Controlled Regime; 4.3 Single-Crystalline Carbon Nanotips: Experiment; 4.4 Single-Crystalline Carbon Nanotips: ab initio Simulations; 4.4.1 Theoretical Background and Numerical Code; 4.4.2 Geometrical Stability of Carbon Nanotip Structures; 4.4.3 Electronic Properties of Carbon Nanotips 327 $a4.5 Plasma-Assisted Doping and Functionalization of Carbon Nanostructures4.5.1 Doping of Carbon-Based Nanostructures: Density Functional Theory Considerations; 4.5.2 Postprocessing of Carbon-Based Nanostructures: Experiments; 4.6 Synthesis of Carbon Nanowall-Like Structures; 5 Quantum Confinement Structures; 5.1 Plasma-Assisted Fabrication of AlN Quantum Dots; 5.2 Nanofabrication of Al(x)In(1-x)N Quantum Dots: Plasma-Aided Bandgap Control; 5.3 Plasma-Aided Nanofabrication of SiC Quantum Dot Arrays; 5.3.1 SiC Properties and Applications; 5.3.2 SiC Growth Modes: With and Without AlN Interlayer 327 $a5.3.3 Quest for Crystallinity and Nanopattern Uniformity 330 $aIn this single work to cover the use of plasma as nanofabrication tool in sufficient depth internationally renowned authors with much experience in this important method of nanofabrication look at reactive plasma as a nanofabrication tool, plasma production and development of plasma sources, as well as such applications as carbon-based nanostructures, low-dimensional quantum confinement structures and hydroxyapatite bioceramics. Written principally for solid state physicists and chemists, materials scientists, and plasma physicists, the book concludes with the outlook for such applications. 606 $aLow temperature plasmas 606 $aManufacturing processes 606 $aNanostructured materials 606 $aPlasma engineering 615 0$aLow temperature plasmas. 615 0$aManufacturing processes. 615 0$aNanostructured materials. 615 0$aPlasma engineering. 676 $a620.5 676 $a621.044 700 $aOstrikov$b K$g(Kostya)$0935724 701 $aXu$b Shuyan$01628671 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830470903321 996 $aPlasma-aided nanofabrication$93965917 997 $aUNINA