LEADER 00936nam0-2200277 --450 001 9910507899603321 005 20211201150355.0 100 $a20211201d1965----kmuy0itay5050 ba 101 $alat$afre 102 $aBE 105 $a 001yy 200 1 $aIndex de Pline le Jeune$fpar Jacques Xavier et J. Van Ooteghem 210 $aBruxelles$cAcadémie Royale de Belgique$d1965 215 $aXX, 981 p.$d26 cm. 225 1 $aMémoires. 2. Série$fAcadémie Royale de Belgique. Classe des Lettres et des Sciences Morales et Politiques$v58.3 610 0 $aPlinio $aIndici 700 1$aXavier,$bJacques$01040466 701 1$aVan Ooteghem,$bJules$0194457 702 1$aPlinius Caecilius Secundus,$bGaius 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910507899603321 952 $a473 PLINIUS JR. I$b42235$fFLFBC 959 $aFLFBC 996 $aIndex de Pline le Jeune$92463295 997 $aUNINA LEADER 10120nam 2200865Ia 450 001 9910821633803321 005 20200520144314.0 010 $a9786612755965 010 $a9781118043578 010 $a111804357X 010 $a9781282755963 010 $a128275596X 010 $a9780470618943 010 $a0470618949 010 $a9780470618936 010 $a0470618930 035 $a(CKB)2670000000034608 035 $a(EBL)588875 035 $a(SSID)ssj0000414604 035 $a(PQKBManifestationID)11285006 035 $a(PQKBTitleCode)TC0000414604 035 $a(PQKBWorkID)10395787 035 $a(PQKB)10194913 035 $a(Au-PeEL)EBL588875 035 $a(CaPaEBR)ebr10419114 035 $a(CaONFJC)MIL275596 035 $a(CaSebORM)9781118043578 035 $a(MiAaPQ)EBC588875 035 $a(OCoLC)689995793 035 $a(OCoLC)840106094 035 $a(OCoLC)ocn840106094 035 $a(OCoLC)460050552 035 $a(FINmELB)ELB178332 035 $a(Perlego)1006421 035 $a(EXLCZ)992670000000034608 100 $a20091215d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComputational lithography /$fXu Ma and Gonzalo R. Arce 205 $a1st edition 210 $aOxford $cWiley-Blackwell$d2010 215 $a1 online resource (244 p.) 225 1 $aWiley series in pure and applied optics 300 $aDescription based upon print version of record. 311 08$a9780470596975 311 08$a047059697X 320 $aIncludes bibliographical references and index. 327 $aComputational Lithography -- Contents -- Preface -- Acknowledgments -- Acronyms -- 1 Introduction -- 1.1 OPTICAL LITHOGRAPHY -- 1.1.1 Optical Lithography and Integrated Circuits -- 1.1.2 Brief History of Optical Lithography Systems -- 1.2 RAYLEIGH'S RESOLUTION -- 1.3 RESIST PROCESSES AND CHARACTERISTICS -- 1.4 TECHNIQUES IN COMPUTATIONAL LITHOGRAPHY -- 1.4.1 Optical Proximity Correction -- 1.4.2 Phase-Shifting Masks -- 1.4.3 Off-Axis Illumination -- 1.4.4 Second-Generation RETs -- 1.5 OUTLINE -- 2 Optical Lithography Systems -- 2.1 PARTIALLY COHERENT IMAGING SYSTEMS -- 2.1.1 Abbe's Model -- 2.1.2 Hopkins Diffraction Model -- 2.1.3 Coherent and Incoherent Imaging Systems -- 2.2 APPROXIMATION MODELS -- 2.2.1 Fourier Series Expansion Model -- 2.2.2 Singular Value Decomposition Model -- 2.2.3 Average Coherent Approximation Model -- 2.2.4 Discussion and Comparison -- 2.3 SUMMARY -- 3 Rule-Based Resolution Enhancement Techniques -- 3.1 RET TYPES -- 3.1.1 Rule-Based RETs -- 3.1.2 Model-Based RETs -- 3.1.3 Hybrid RETs -- 3.2 RULE-BASED OPC -- 3.2.1 Catastrophic OPC -- 3.2.2 One-Dimensional OPC -- 3.2.3 Line-Shortening Reduction OPC -- 3.2.4 Two-Dimensional OPC -- 3.3 RULE-BASED PSM -- 3.3.1 Dark-Field Application -- 3.3.2 Light-Field Application -- 3.4 RULE-BASED OAI -- 3.5 SUMMARY -- 4 Fundamentals of Optimization -- 4.1 DEFINITION AND CLASSIFICATION -- 4.1.1 Definitions in the Optimization Problem -- 4.1.2 Classification of Optimization Problems -- 4.2 UNCONSTRAINED OPTIMIZATION -- 4.2.1 Solution of Unconstrained Optimization Problem -- 4.2.2 Unconstrained Optimization Algorithms -- 4.3 SUMMARY -- 5 Computational Lithography with Coherent Illumination -- 5.1 PROBLEM FORMULATION -- 5.2 OPC OPTIMIZATION -- 5.2.1 OPC Design Algorithm -- 5.2.2 Simulations -- 5.3 TWO-PHASE PSM OPTIMIZATION -- 5.3.1 Two-Phase PSM Design Algorithm -- 5.3.2 Simulations. 327 $a5.4 GENERALIZED PSM OPTIMIZATION -- 5.4.1 Generalized PSM Design Algorithm -- 5.4.2 Simulations -- 5.5 RESIST MODELING EFFECTS -- 5.6 SUMMARY -- 6 Regularization Framework -- 6.1 DISCRETIZATION PENALTY -- 6.1.1 Discretization Penalty for OPC Optimization -- 6.1.2 Discretization Penalty for Two-Phase PSM Optimization -- 6.1.3 Discretization Penalty for Generalized PSM Optimization -- 6.2 COMPLEXITY PENALTY -- 6.2.1 Total Variation Penalty -- 6.2.2 Global Wavelet Penalty -- 6.2.3 Localized Wavelet Penalty -- 6.3 SUMMARY -- 7 Computational Lithography with Partially Coherent Illumination -- 7.1 OPC OPTIMIZATION -- 7.1.1 OPC Design Algorithm Using the Fourier Series Expansion Model -- 7.1.2 Simulations Using the Fourier Series Expansion Model -- 7.1.3 OPC Design Algorithm Using the Average Coherent Approximation Model -- 7.1.4 Simulations Using the Average Coherent Approximation Model -- 7.1.5 Discussion and Comparison -- 7.2 PSM OPTIMIZATION -- 7.2.1 PSM Design Algorithm Using the Singular Value Decomposition Model -- 7.2.2 Discretization Regularization for PSM Design Algorithm -- 7.2.3 Simulations -- 7.3 SUMMARY -- 8 Other RET Optimization Techniques -- 8.1 DOUBLE-PATTERNING METHOD -- 8.2 POST-PROCESSING BASED ON 2D DCT -- 8.3 PHOTORESIST TONE REVERSING METHOD -- 8.4 SUMMARY -- 9 Source and Mask Optimization -- 9.1 LITHOGRAPHY PRELIMINARIES -- 9.2 TOPOLOGICAL CONSTRAINT -- 9.3 SOURCE-MASK OPTIMIZATION ALGORITHM -- 9.4 SIMULATIONS -- 9.5 SUMMARY -- 10 Coherent Thick-Mask Optimization -- 10.1 KIRCHHOFF BOUNDARY CONDITIONS -- 10.2 BOUNDARY LAYER MODEL -- 10.2.1 Boundary Layer Model in Coherent Imaging Systems -- 10.2.2 Boundary Layer Model in Partially Coherent Imaging Systems -- 10.3 LITHOGRAPHY PRELIMINARIES -- 10.4 OPC OPTIMIZATION -- 10.4.1 Topological Constraint -- 10.4.2 OPC Optimization Algorithm Based on BL Model Under Coherent Illumination. 327 $a10.4.3 Simulations -- 10.5 PSM OPTIMIZATION -- 10.5.1 Topological Constraint -- 10.5.2 PSM Optimization Algorithm Based on BL Model Under Coherent Illumination -- 10.5.3 Simulations -- 10.6 SUMMARY -- 11 Conclusions and New Directions of Computational Lithography -- 11.1 CONCLUSION -- 11.2 NEW DIRECTIONS OF COMPUTATIONAL LITHOGRAPHY -- 11.2.1 OPC Optimization for the Next-Generation Lithography Technologies -- 11.2.2 Initialization Approach for the Inverse Lithography Optimization -- 11.2.3 Double Patterning and Double Exposure Methods in Partially Coherent Imaging System -- 11.2.4 OPC and PSM Optimizations for Inverse Lithography Based on Rigorous Mask Models in Partially Coherent Imaging System -- 11.2.5 Simultaneous Source and Mask Optimization for Inverse Lithography Based on Rigorous Mask Models -- 11.2.6 Investigation of Factors Influencing the Complexity of the OPC and PSM Optimization Algorithms -- Appendix A: Formula Derivation in Chapter 5 -- Appendix B: Manhattan Geometry -- Appendix C: Formula Derivation in Chapter 6 -- Appendix D: Formula Derivation in Chapter 7 -- Appendix E: Formula Derivation in Chapter 8 -- Appendix F: Formula Derivation in Chapter 9 -- Appendix G: Formula Derivation in Chapter 10 -- Appendix H: Software Guide -- References -- Index. 330 $aA Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography . Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers ... 410 0$aWiley series in pure and applied optics. 606 $aMicrolithography$xMathematics 606 $aIntegrated circuits$xDesign and construction$xMathematics 606 $aPhotolithography$xMathematics 606 $aSemiconductors$xEtching$xMathematics 606 $aResolution (Optics) 615 0$aMicrolithography$xMathematics. 615 0$aIntegrated circuits$xDesign and construction$xMathematics. 615 0$aPhotolithography$xMathematics. 615 0$aSemiconductors$xEtching$xMathematics. 615 0$aResolution (Optics) 676 $a621.381531 700 $aMa$b Xu$f1983-$01697941 701 $aArce$b Gonzalo R$01605343 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910821633803321 996 $aComputational lithography$94079027 997 $aUNINA