LEADER 01356nam0-2200433---450- 001 990009650680403321 005 20151203132551.0 010 $a978-88-96329-05-4 035 $a000965068 035 $aFED01000965068 035 $a(Aleph)000965068FED01 035 $a000965068 100 $a20121128d2012----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa-------001yy 200 1 $aFondamenti di macchine elettriche$e(appunti dalle lezioni)$fVittorio Isastia Cimino 210 $aNapoli$cPraise Worthy Prize$d©2012 215 $a530 p.$cill.$d25 cm 300 $aIn testa al frpontespizio "Università degli studi di Napoli Federico II" 610 0 $aMacchine elettriche 676 $a621.313 700 1$aIsastia Cimino,$bVittorio$0330922 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009650680403321 952 $a10 F I 276/A$bDIEL$fDINEL 952 $a10 F I 276/B$bDIEL$fDINEL 952 $a13 G 75 02$b0274 / 2015$fFINBC 952 $a13 G 75 03$b0275 / 2015$fFINBC 952 $a13 26 11$b0276 / 2015$fFINBC 952 $a23 06 E 12$b0277 / 2015$fFINAG 952 $a23 06 E 13$b0278 / 2015$fFINAG 952 $a23 06 E 14$b0279 / 2015$fFINAG 959 $aDINEL 959 $aFINBC 959 $aFINAG 996 $aFondamenti di macchine elettriche$9840057 997 $aUNINA LEADER 05469nam 2200505 450 001 9910506406203321 005 20220716071416.0 010 $a3-030-88307-8 035 $a(CKB)5340000000068446 035 $a(MiAaPQ)EBC6792414 035 $a(Au-PeEL)EBL6792414 035 $a(OCoLC)1280458567 035 $a(PPN)258298030 035 $a(EXLCZ)995340000000068446 100 $a20220716d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectronic properties of rhombohedral graphite /$fServet Ozdemir 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (142 pages) 225 1 $aSpringer Theses 311 $a3-030-88306-X 327 $aIntro -- Supervisor's Foreword -- Preface -- Acknowledgements -- Contents -- 1 Review of Rhombohedral Graphite -- 1.1 Introduction -- 1.2 Crystal Structure and Hexagonal Brillouin Zone of Graphene -- 1.3 Tight Binding Approximation of Graphene -- 1.3.1 Matrix Elements -- 1.4 Low Energy Bands -- 1.5 Linear Dispersion Relation and Massless Dirac Fermions -- 1.6 Pseudospin, Chirality, and Berry Phase -- 1.7 Tight Binding Model of AB-Stacked Bilayer Graphene -- 1.8 Low Energy Band Structure of Bilayer Graphene -- 1.9 Two Band Hamiltonian, Chirality, and Berry Phase in Bilayer Graphene -- 1.10 Tight Binding Model of ABC Stacked N-layer Graphene -- 1.11 Topological Arguments for Low Energy Flat Surface Bands -- 1.12 Landau Spectrum of ABC-Stacked Graphene Layers -- 1.13 Spontaneous Symmetry Broken States -- 1.14 Displacement Field Induced Gap and Screening Effects in Rhombohedral Stacks of Graphene -- 1.15 Trigonal Warping and Berry Phase of N? in Rhombohedral Graphite -- 1.16 Flat Band Superconductivity in Rhombohedral Graphite -- 1.17 Stacking Faults on Rhombohedral Graphite Films -- 1.18 Identification of Rhombohedral Graphite -- 1.18.1 Raman Spectroscopy -- 1.18.2 Transmission Electron Microscopy -- 1.19 Density Functional Theory Predicted Magnetic Gap -- 1.20 Angular Resolved Photoemission Spectroscopy of Rhombohedral Graphite -- 1.21 Shear Stress and Doping Induced Stacking Order Control -- 1.22 Summary -- References -- 2 Fundamentals of Electron Transport -- 2.1 Introduction -- 2.2 Effective Mass, Mobility, and Electrical Conductivity -- 2.3 Ohms Law Using Boltzmann Transport Equation -- 2.4 Quasi Fermi Level Separation and Diffusive Electron Transport Viewpoint -- 2.5 Hall Effect in a Two-Dimensional System in the Presence of Non-quantising Magnetic Field -- 2.6 Multi-band Transport. 327 $a2.7 Hall Effect in a Two-Dimensional System in the Presence of Quantising Magnetic Field -- 2.8 Hall Effects in the Absence of Magnetic Field -- 2.8.1 Anomalous Hall Effect -- 2.8.2 Spin Hall Effect -- 2.8.3 Valley Hall Effect -- 2.9 Localization Effects in Disordered Mesoscopic Systems -- 2.9.1 Classical Picture of Diffusion and Localization -- 2.9.2 Weak Localization -- 2.9.3 Weak Anti-localization -- References -- 3 Experimental Technicalities -- 3.1 Fabrication of van der Waals Heterostructures -- 3.2 Measurement Electronics -- 3.2.1 Phase Sensitive Detection and Lock in Amplifier -- 3.3 Measurement Geometry and Electrostatic Gating -- 3.4 Temperature Control -- 3.4.1 Sorption Pump-Controlled Helium-3 Cooling -- 3.4.2 Helium-3/Helium-4 Mixture Dilution Fridge -- 3.5 Magnetic Field -- 3.6 Summary -- References -- 4 Bulk Versus Surface Conduction in Rhombohedral Graphite Films -- 4.1 Introduction -- 4.2 Temperature Dependence of Zero Gate Resistivity -- 4.3 Multi Carrier-Type Transport -- 4.4 Semiconductor-Metal Transition -- 4.5 Summary -- References -- 5 Landau Level Spectroscopy of Rhombohedral Graphite Films -- 5.1 Introduction -- 5.2 Single Gated Landau Fan Maps -- 5.3 Implied Low Energy Band Structure -- 5.4 Discussion -- 5.5 Summary -- References -- 6 Spontaneous Gap Opening in at Charge Neutrality Point of Rhombohedral Graphite Films -- 6.1 Introduction -- 6.2 Thermal Activation Gap Accompanied by Topological Currents -- 6.3 DC Characterisation of the Gapped Resistive State -- 6.4 Magnetic Field Dependence -- 6.5 Hysteretic Behaviour -- 6.6 Summary -- References -- 7 Displacement Field Induced Band Gap Opening in Rhombohedral Graphite Films -- 7.1 Introduction -- 7.2 Displacement Field Induced Resistivity Increase -- 7.3 Absence of a Gap Opening for Graphite Films of Mixed Stacking. 327 $a7.4 Non-local Signal Due to Displacement Field Induced Gap Opening -- 7.5 Summary -- References -- 8 Three Dimensional Quantum Interference of Bulk Electrons -- 8.1 Introduction -- 8.2 Magnetic Field Rotation of a 9-Layer Film -- 8.3 Magnetic Field Rotation of a 14-Layer Film -- 8.4 Summary -- References -- 9 Summary -- Curriculum Vitae -- Servet Ozdemir -- Employment History -- Education -- Publications -- Talks and Presentations -- Awards. 410 0$aSpringer theses. 606 $aGraphite 606 $aGraphene 606 $aThin films 615 0$aGraphite. 615 0$aGraphene. 615 0$aThin films. 676 $a662.92 700 $aO?zdemir$b Servet$01073443 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910506406203321 996 $aElectronic Properties of Rhombohedral Graphite$92569581 997 $aUNINA