LEADER 07100nam 22004573 450 001 9910506401303321 005 20211214151304.0 010 $a981-16-5465-4 035 $a(CKB)4950000000283471 035 $a(MiAaPQ)EBC6789398 035 $a(Au-PeEL)EBL6789398 035 $a(OCoLC)1285167136 035 $a(EXLCZ)994950000000283471 100 $a20211214d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMicrobial Enhanced Oil Recovery $ePrinciples and Potential 210 1$aSingapore :$cSpringer Singapore Pte. Limited,$d2021. 210 4$d©2022. 215 $a1 online resource (272 pages) 225 1 $aGreen Energy and Technology Ser. 311 $a981-16-5464-6 327 $aIntro -- Contents -- Editors and Contributors -- Abbreviations/Nomenclature -- Petroleum Reservoirs and Oil Production Mechanisms -- 1 Introduction -- 2 Reservoir Potential -- 2.1 Geological Setting -- 2.2 Petroleum Reserves -- 3 Physicochemical Characterization of a Petroleum Reservoir -- 3.1 Composition and Mineralogy of Petroleum Reservoir -- 3.2 Characterization of Pore Distribution -- 3.3 Reservoir Fluid Properties -- 4 Classification of Petroleum Reservoir -- 5 Reservoir Drive Mechanisms -- 6 Material Balance Equation (MBE) -- 7 Reservoir Drive Performance Indexes (RDPI) -- 8 Conclusion -- References -- Secondary and Tertiary Oil Recovery Processes -- 1 Introduction -- 2 Important Parameters and Mechanisms of EOR -- 3 Secondary Oil Recovery Methods -- 3.1 Waterflooding -- 3.2 Gas Injection -- 3.3 Buckley Leverett Model to Oil Recovery -- 4 Tertiary Oil Recovery Methods -- 4.1 Thermal EOR Methods -- 4.2 Chemical EOR Methods -- 4.3 Gas EOR Methods -- 4.4 Microbial EOR -- 5 Screening Criteria for EOR Methods -- 6 Core Flooding Experiments for EOR -- 7 Modeling and Simulation of EOR Process -- 8 Conclusion -- References -- CO2-Based Enhanced Oil Recovery -- 1 Introduction -- 2 Recovery Mechanisms for CO2 Flooding -- 3 Screening Criteria and Challenges Associated with CO2 Flooding -- 4 Water-Alternating-Gas/CO2 (WAG) Flooding -- 5 Sources of CO2, Capture, and Storage -- 6 Evaluation of CO2-EOR Flooding -- 6.1 MMP Determination -- 6.2 Fluid Sampling -- 6.3 Measuring PVT Properties for Reservoir fluid-CO2 Mixtures -- 6.4 Evaluation of Oil Recovery Potential by CO2 Flooding -- 6.5 Modeling and Simulation Study of CO2 Flooding -- 7 Conclusion -- References -- Optimum Formulation of Chemical Slug and Core Flooding Studies -- 1 Introduction -- 2 Mechanisms Involved in Chemical EOR -- 3 Chemicals Selection Criteria. 327 $a3.1 Alkali Screening Based on Crude Oil and Reservoir Properties -- 3.2 Surfactant Selection and Flooding in Reservoirs -- 3.3 Polymer Selection for Heavy Crude Oil -- 4 Optimum Slug Formation for Chemical EOR -- 4.1 Individual Chemical Flooding -- 4.2 Combined Effects of Chemical Flooding -- 4.3 Potential and Progress of Alkali-Surfactant-Polymer Flooding -- 5 Core Flooding of Alkali-Surfactant-Polymer in Laboratories -- 6 Field Application of Alkali-Surfactant-Polymer Slug -- 7 Technical Issues and Their Solutions of ASP Flooding -- 8 Conclusion -- References -- Screening of Extremophiles for Microbial Enhanced Oil Recovery Based on Surface Active Properties -- 1 Introduction -- 2 Screening of Extremophiles -- 2.1 Concept of Extremophiles in MEOR and Their Classifications -- 2.2 Strategies of Extremophiles to Perform MEOR -- 2.3 Screening of Extremophiles from Various Environments -- 2.4 Screening Parameters for Extremophiles -- 2.5 Technological Advancement in MEOR by Employing rDNA Technology and Genetically Engineered Microbes -- 2.6 In-Situ MEOR by Screened Extremophiles -- 3 Conclusion -- References -- Effect of Reservoir Environmental Conditions and Inherent Microorganisms -- 1 Introduction -- 2 Influence of Reservoir Environmental Conditions -- 2.1 Properties of Crude Oil -- 2.2 Rock Lithology -- 2.3 Reservoir Temperature and Pressure -- 2.4 Environmental pH -- 2.5 Fluid Salinity -- 2.6 Permeability -- 3 Microbiological Approaches for Detecting Inherent Microorganisms -- 4 Microbial Diversity in Worldwide Oil Reservoirs -- 4.1 Various Microbial Populations in Worldwide Oil Reservoirs -- 5 Reservoir Environmental Screening Parameters to Conduct MEOR Trials -- 6 Conclusion -- References -- Optimization of Culture Conditions for the Production of Biosurfactants -- 1 Introduction -- 2 Optimizing Parameters -- 2.1 pH -- 2.2 Temperature. 327 $a2.3 Carbon (C) Source -- 2.4 Nitrogen (N) Source -- 2.5 C/N Ratio -- 2.6 Other Factors -- 3 Optimization Designs -- 3.1 One-Factor-At-A-Time (OFAT) -- 3.2 Plackett-Burman Design (PBD) -- 3.3 Taguchi Model -- 3.4 Response Surface Methodology (RSM) -- 3.5 Artificial Neural Network and Genetic Algorithm -- 4 Bottlenecks of Optimization -- 5 Conclusion -- References -- Design of Consortium for the Production of Desired Metabolites -- 1 Introduction -- 1.1 Biosurfactant-Producing Microbes -- 1.2 Hydrocarbon-Degrading Microbes -- 2 Design of Microbial Consortium -- 3 Criteria for Designing Microbial Consortium -- 4 Advantages of  Microbial Consortium Over Pure Isolates -- 5 Conclusion -- References -- Identification of Various Metabolites like Gases, Biopolymers and Biosurfactants -- 1 Introduction -- 2 Production of Microbial Metabolites -- 2.1 Biosurfactants -- 2.2 Biopolymers -- 2.3 BioGases -- 2.4 Other Metabolites -- 3 Metabolic Pathways Involved in the Production of the Above Metabolites -- 3.1 Biosurfactant Synthesis -- 3.2 Rhamnolipid Biosynthesis -- 3.3 Biopolymer Synthesis -- 3.4 Biogases Synthesis -- 4 Identification Techniques Involved in the Synthesis of Metabolites -- 4.1 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.2 Nuclear Magnetic Resonance (NMR) -- 4.3 Mass Spectroscopy -- 5 Conclusion -- References -- Core Flooding Studies Using Microbial Systems -- 1 Introduction -- 2 Basics of Core Flooding Experiments Using Biosurfactant Systems -- 3 Core Flooding Investigations Utilizing Biosurfactant Systems -- 3.1 In-Situ and Ex-Situ MEOR in Core Flooding Experiments with Biosurfactants -- 4 Core-Flooding Studies Employing Mixed Biosurfactant Systems -- 5 Application of Mathematical Modelling for MEOR -- 6 Conclusion -- References -- Recent Case Studies of In-Situ and Ex-Situ Microbial Enhanced Oil Recovery -- 1 Introduction. 327 $a2 Case Studies of In-Situ MEOR -- 2.1 Key Factors Affecting the In-Situ MEOR Process -- 3 Case Studies of Ex-Situ MEOR -- 4 Conclusion -- References. 410 0$aGreen Energy and Technology Ser. 517 $aMicrobial Enhanced Oil Recovery 608 $aElectronic books. 700 $aPandey$b Lalit$0878450 701 $aTiwari$b Pankaj$01072843 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910506401303321 996 $aMicrobial Enhanced Oil Recovery$92569054 997 $aUNINA LEADER 04051nam 2200901 a 450 001 9910954899803321 005 20200520144314.0 010 $a9786612189210 010 $a9781282189218 010 $a1282189212 010 $a9780226190402 010 $a0226190404 024 7 $a10.7208/9780226190402 035 $a(CKB)111004366538946 035 $a(EBL)408518 035 $a(OCoLC)262293142 035 $a(SSID)ssj0000144053 035 $a(PQKBManifestationID)12037698 035 $a(PQKBTitleCode)TC0000144053 035 $a(PQKBWorkID)10120158 035 $a(PQKB)11382924 035 $a(SSID)ssj0000517919 035 $a(PQKBManifestationID)12148028 035 $a(PQKBTitleCode)TC0000517919 035 $a(PQKBWorkID)10487423 035 $a(PQKB)11503348 035 $a(MiAaPQ)EBC408518 035 $a(DE-B1597)524349 035 $a(OCoLC)824153986 035 $a(DE-B1597)9780226190402 035 $a(Au-PeEL)EBL408518 035 $a(CaPaEBR)ebr10314043 035 $a(CaONFJC)MIL218921 035 $a(Perlego)1851675 035 $a(EXLCZ)99111004366538946 100 $a19960814d1997 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 14$aThe educated mind $ehow cognitive tools shape our understanding /$fKieran Egan 205 $a1st ed. 210 $aChicago $cUniversity of Chicago Press$dc1997 215 $a1 online resource (312 p.) 300 $aDescription based upon print version of record. 311 08$a9780226190365 311 08$a0226190366 311 08$a9780226190396 311 08$a0226190390 320 $aIncludes bibliographical references (p. 281-292) and index. 327 $tFront matter --$tContents --$tAcknowledgments --$tIntroduction --$tPart One --$tPart Two --$tAfterword --$tBibliography --$tIndex 330 $aThe Educated Mind offers a bold and revitalizing new vision for today's uncertain educational system. Kieran Egan reconceives education, taking into account how we learn. He proposes the use of particular "intellectual tools"-such as language or literacy-that shape how we make sense of the world. These mediating tools generate successive kinds of understanding: somatic, mythic, romantic, philosophical, and ironic. Egan's account concludes with practical proposals for how teaching and curriculum can be changed to reflect the way children learn. "A carefully argued and readable book. . . . Egan proposes a radical change of approach for the whole process of education. . . . There is much in this book to interest and excite those who discuss, research or deliver education."-Ann Fullick, New Scientist "A compelling vision for today's uncertain educational system."-Library Journal "Almost anyone involved at any level or in any part of the education system will find this a fascinating book to read."-Dr. Richard Fox, British Journal of Educational Psychology "A fascinating and provocative study of cultural and linguistic history, and of how various kinds of understanding that can be distinguished in that history are recapitulated in the developing minds of children."-Jonty Driver, New York Times Book Review 606 $aEducation$xPhilosophy 606 $aCognition and culture 606 $aCivilization, Western$xHistory 606 $aEducational anthropology 606 $aEducational sociology 606 $aLearning, Psychology of 606 $aTeaching 606 $aPsycholinguistics 615 0$aEducation$xPhilosophy. 615 0$aCognition and culture. 615 0$aCivilization, Western$xHistory. 615 0$aEducational anthropology. 615 0$aEducational sociology. 615 0$aLearning, Psychology of. 615 0$aTeaching. 615 0$aPsycholinguistics. 676 $a370/.1 700 $aEgan$b Kieran$0479319 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910954899803321 996 $aThe educated mind$94362500 997 $aUNINA