LEADER 08255nam 2200589 450 001 9910506391503321 005 20230704163938.0 010 $a3-030-83383-6 035 $a(CKB)5340000000068488 035 $a(MiAaPQ)EBC6792481 035 $a(Au-PeEL)EBL6792481 035 $a(OCoLC)1280462211 035 $a(PPN)258299185 035 $a(EXLCZ)995340000000068488 100 $a20220718d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 04$aThe Rye Genome /$fM. Timothy Rabanus-Wallace, Nils Stein, editors 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (251 pages) 225 1 $aCompendium of Plant Genomes 311 $a3-030-83382-8 327 $aIntro -- Preface to the Series -- Preface -- Contents -- Contributors -- 1 Economic and Academic Importance of Rye -- Abstract -- 1.1 Background -- 1.2 World Rye Production -- 1.3 Rye End Uses -- 1.4 Academic Importance of Rye -- 1.4.1 Rye as Genetic Resource for Wheat Improvement -- 1.4.2 Rye Grain as a Source for Human Health Benefit -- 1.4.3 Abiotic Stress Tolerance of Rye -- 1.5 Conclusion -- References -- 2 Hybrid Rye Breeding -- Abstract -- 2.1 Introduction -- 2.2 Types of Varieties in Rye -- 2.3 Genetic Basis for Hybrid Breeding -- 2.3.1 Self-fertility and Self-incompatibility -- 2.3.2 Cytoplasmic-Male Sterility -- 2.3.3 Restoration of Male Fertility -- 2.3.4 Heterotic Groups -- 2.3.5 Inbreeding Tolerance -- 2.3.6 GCA/SCA Variance Relationship -- 2.3.7 Correlation Inbred Lines: Testcrosses -- 2.4 Enabling Technologies -- 2.4.1 Marker Technology -- 2.4.2 High-Throughput Phenotyping -- 2.4.3 Gene Discovery -- 2.5 Enhancing Genetic Diversity -- 2.5.1 Broadening of Central European Pools -- 2.5.2 Use of Non-adapted Material for Introgressing Single Genes -- 2.5.3 Enhancing Quantitative FHB Resistance -- 2.6 Breeding Schemes -- 2.6.1 Recurrent Selection to Improve Base Populations -- 2.6.2 Product Development -- 2.7 Preconditions for Inscription of a Variety -- 2.8 Breeding Goals -- 2.9 Breeding Progress -- 2.10 Conclusions and Future Developments -- References -- 3 Rye Cytogenetics and Chromosome Genomics -- Abstract -- 3.1 Nuclear Genome Size -- 3.2 Rye Chromosome Morphology-Comparative Studies -- 3.3 Functional Genetic Criteria for Chromosome Identification within Subtribe Triticinae -- 3.4 C-bands as Markers for Cytogenetic Analysis -- 3.5 Rye Chromosome Polymorphism and a Standard Karyotype -- 3.6 Molecular Cytogenetics - New Chromosome Markers -- 3.7 Flow Cytogenetics -- 3.7.1 Flow Karyotyping and Chromosome Sorting. 327 $a3.7.2 Chromosome Genomics -- Acknowledgments -- References -- 4 The B Chromosome of Rye -- Abstract -- 4.1 Introduction -- 4.2 Rye B Chromosome Occurrence and Structural Variability -- 4.3 Rye B Chromosome Origin -- 4.4 DNA and Chromatin Composition of Rye Bs -- 4.5 Meiotic Behaviour of Rye Bs -- 4.6 Drive Mechanism of the Rye B Chromosome -- 4.7 Effects of Rye B Chromosomes -- 4.8 Morphological Changes Associated with Bs -- 4.9 Effects of Bs on Chiasma Formation and Homologous Chromosome Association -- 4.10 Transcriptional Effects of Rye B Chromosomes -- 4.11 B Chromosome Located Genes and Their Evolution -- 4.12 Potential Applications of B Chromosomes -- Acknowledgements -- References -- 5 Dissection of the Rye Genome by the Gametocidal System -- Abstract -- 5.1 The Gametocidal System -- 5.2 Dissection of Rye Chromosomes in Common Wheat by the Gametocidal System -- 5.3 Production of Dissection Lines of Rye Chromosomes -- 5.4 Types of Chromosomal Rearrangement Induced by the Gametocidal System -- 5.5 Use of the Dissection Lines -- References -- 6 Evolution and Domestication of Rye -- Abstract -- 6.1 Rye-A Remarkable Cereal -- 6.2 The Small Genus Secale -- 6.3 The Dynamic Multi-stage Model of Plant Domestication -- 6.4 Cereal Domestication in the Fertile Crescent -- 6.5 Centres of Diversity and Wild Ancestors -- 6.6 Archaeobotany Dates Onset of Cereal Domestication -- 6.7 Characteristics of Domesticated Cereals and Underlying Genes -- 6.8 Weeds and Crops -- 6.9 A Secondary Domestication Origin for Rye -- 6.10 The Peculiar Situation on the Iberian Peninsula and a Little Excursion into Linguistics -- 6.11 The Exceptional Nature of Rye Among Our Cereal Crops -- References -- 7 Assembling the Rye Genome -- Abstract -- 7.1 Introduction -- 7.1.1 Genome Assemblies -- 7.2 De Novo Assembly of Triticeae Genomes During the 2010s-A Broad Outline. 327 $a7.2.1 The IRGSC 'Lo7' Assembly -- 7.2.2 Methodology -- 7.2.3 Results and First Findings -- 7.2.4 The Henan Agricultural University 'Weining' Assembly -- 7.2.4.1 Methodology -- 7.2.5 Results and First Findings -- 7.2.6 First Findings from the Weining Rye Reference Genome -- 7.3 Comparing Assemblies -- 7.4 Future Steps in Rye Genome Sequencing -- References -- 8 The Gene and Repetitive Element Landscape of the Rye Genome -- Abstract -- 8.1 Introduction -- 8.2 Tandem Repeats -- 8.2.1 Telomeric Repeats -- 8.2.2 Subtelomeric Repeats -- 8.3 Transposable Elements -- 8.3.1 Methods -- 8.3.1.1 How Much TEs Contribute to the Rye Genome -- 8.3.1.2 Evolutionary Dynamics of the Most Abundant LTR-Containing Retrotransposon Families in Triticeae Species -- 8.4 Gene Prediction in the Rye Genome -- 8.4.1 Methods -- 8.4.2 Results -- 8.5 Conclusion -- Acknowledgments -- References -- 9 Bridging the Genotype-Phenotype Gap for Precision Breeding in Rye -- Abstract -- 9.1 Introduction -- 9.1.1 Genomics in the Overlooked Cereal is Coming of Age -- 9.1.2 Cross-Pollination-Challenge and Opportunity -- 9.1.3 Unlocking Genetic Diversity in Rye -- 9.2 Mapped Major Genes-The Peak of an Iceberg -- 9.2.1 Agronomic Traits -- 9.2.2 Abiotic Stress Tolerance -- 9.2.3 Disease Resistance -- 9.2.4 Grain Quality -- 9.3 QTL Mapping in Rye Hybrids-The Gene Discovery Tool -- 9.3.1 Agronomic Traits -- 9.3.2 Disease Resistance -- 9.3.3 Abiotic Stress Tolerance -- 9.3.4 Grain Quality -- 9.4 Understanding the Rye Genome-The Way Forward -- 9.5 Conclusions -- Acknowledgements -- References -- 10 Genomics of Self-Incompatibility and Male-Fertility Restoration in Rye -- Abstract -- 10.1 Self-Incompatibility (SI)-Cell-to-Cell Communication for Fertilisation Control -- 10.2 Managing S and Z Diversity in Rye Breeding Programs -- 10.3 Floral Architecture in Rye Supports Outcrossing and Wind Pollination. 327 $a10.4 Post-zygotic Incompatibility (Hybrid Incompatibility) -- 10.5 The Post-zygotic Reproductive Isolation (RI) and Embryo Lethality -- 10.6 Wheat-Rye Crossability -- 10.7 The Mitochondrial Basis of Cytoplasmic Male Sterility in Rye is Unknown -- 10.8 Rye as a Source of Fertility Restorer Genes for CMS-Based Hybrid Breeding Systems in Cereals -- 10.9 Expansion of the RFL-PPR and RFL-MTERF Families in Outcrossing Self-Incompatible Species -- 10.10 Possible Applications of Rye Restorer Genes in Hybrid Breeding in Other Triticeae Species -- 10.11 Conclusion -- References -- 11 Genetics and Genomics of Stress Tolerance -- Abstract -- 11.1 Introduction -- 11.2 Genetic Background of Resistance to Biotic Stresses -- 11.2.1 Diseases -- 11.2.2 Pests -- 11.3 Genetic Background of Resistance to Abiotic Stresses -- 11.3.1 Nutrient Stress -- 11.3.2 Drought -- 11.3.3 Low Temperature -- 11.4 The Genetic Background and Role of Allelochemicals in Defense Against Biotic and Abiotic Stresses -- 11.4.1 Benzoxazinoids (BXs) -- 11.5 Rye as a Source of Complex Resistance for Wheat Improvement -- References. 410 0$aCompendium of plant genomes. 606 $aPlant breeding 606 $aPlant genetics 606 $aAgriculture 606 $aSègol$2thub 606 $aGenètica vegetal$2thub 608 $aLlibres electrònics$2thub 615 0$aPlant breeding. 615 0$aPlant genetics. 615 0$aAgriculture. 615 7$aSègol 615 7$aGenètica vegetal 676 $a631.52 702 $aRabanus-Wallace$b M. Timothy 702 $aStein$b Nils 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910506391503321 996 $aThe Rye Genome$92569285 997 $aUNINA