LEADER 04404nam 2200541 450 001 9910506390803321 005 20231006193856.0 010 $a3-030-84582-6 035 $a(CKB)4950000000281565 035 $a(MiAaPQ)EBC6785181 035 $a(Au-PeEL)EBL6785181 035 $a(OCoLC)1280046787 035 $a(PPN)258298391 035 $a(EXLCZ)994950000000281565 100 $a20220712d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDelay and uncertainty in human balancing tasks /$fTama?s Insperger, John Milton 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dŠ2021 215 $a1 online resource (162 pages) 225 1 $aLecture notes on mathematical modelling in the life sciences 311 $a3-030-84581-8 327 $aIntro -- Preface -- Acknowledgements -- Contents -- Chapter 1 Introduction -- 1.1 Organization -- 1.2 Resources -- Chapter 2 Background -- 2.1 The Inverted Pendulum -- 2.2 Time-delayed Feedback Control -- 2.3 Stability Analysis -- 2.3.1 PD Feedback -- 2.3.2 PDA Feedback -- 2.3.3 Predictor Feedback -- 2.4 Critical Parameters -- 2.4.1 PD Feedback -- 2.4.2 PDA Feedback -- 2.4.3 Predictor Feedback -- 2.5 Summary -- Chapter 3 Pole Balancing at the Fingertip -- 3.1 Pendulum-cart Model -- 3.1.1 The Control Problem: Stabilization Angular Displacement -- 3.1.2 Equations of Motion -- 3.1.3 Estimation of m0 -- 3.1.4 Physical Constraints -- 3.1.5 Measurement of ? -- 3.2 Feedback Identification -- 3.3 Skill Acquisition -- 3.4 Over-control -- 3.5 Summary -- Chapter 4 Sensory Dead Zones: Switching Feedback -- 4.1 Time Scales for Balance Control -- 4.1.1 Vertical Displacement Angle -- 4.1.2 Fingertip Speed -- 4.2 Sensory Dead Zones -- 4.2.1 Dead Zones in Pole Balancing -- 4.2.2 Estimating the Sensory Dead Zone -- 4.2.3 Dead Zone Benefits -- 4.3 Model: Pole Balancing on the Fingertip -- 4.3.1 Feedback Identification -- 4.3.2 Edge of Stability -- 4.3.3 Why the Pole Falls? -- 4.4 Intermittent Control -- 4.5 Summary -- Chapter 5 Microchaos in Balance Control -- 5.1 Semi-discretization -- 5.2 First-order Models -- 5.3 Quail Map -- 5.4 Microchaotic Map -- 5.4.1 Permanent Microchaos -- 5.4.2 Transient Microchaos -- 5.5 Hayes Equation -- 5.6 Postural Sway: Eurich-Milton Model -- 5.6.1 Case 1: Continuous Control (R?) -- 5.6.2 Case 2: Digital Control (R = 0) -- 5.6.3 Case 3: Semi-discretized Control (0 < -- R < -- ?) -- 5.7 Bifurcations -- 5.8 Summary -- Chapter 6 Postural Sway during Quiet Standing -- 6.1 Postural Sway -- 6.2 Inverted Pendulum Models for Postural Sway -- 6.3 Sensory Dead Zone -- 6.4 Time Delay -- 6.5 "Pinned" Inverted Pendulum Model. 327 $a6.6 Sensory Dead Zones and Torque Saturation -- 6.7 Chaotic Sway -- 6.8 Frontal Plane Balance Control: Stance Width -- 6.9 Summary -- Chapter 7 Stability Radii and Uncertainty in Balance Control -- 7.1 Rectangular Tiling -- 7.2 D-curve Slicing -- 7.3 ?-Pseudospectrum -- 7.4 Comparison of the Three Approaches -- 7.5 Measuring Uncertainty Radii -- 7.6 Stability Radii for Frontal Plane Balance as Stance Width Changes -- 7.7 Summary -- Chapter 8 Challenges for the Future -- 8.1 Derivative Control -- 8.2 Different Feedback Delays in the Feedback Loop -- 8.3 Act-and-Wait Control -- 8.4 Ball and Beam Balancing -- 8.5 Balancing on Balance Boards -- 8.6 Skill Acquisition -- 8.7 Stochastic Perturbations -- 8.8 Falls -- Appendix A Semi-discretization Method -- Appendix B Stability Radii: Some Mathematical Aspects -- References -- Index. 410 0$aLecture notes on mathematical modelling in the life sciences. 606 $aHuman mechanics$xMathematical models 606 $aEquilibri (Fisiologia)$2thub 606 $aModels matemātics$2thub 606 $aEquacions diferencials retardades$2thub 608 $aLlibres electrōnics$2thub 615 0$aHuman mechanics$xMathematical models. 615 7$aEquilibri (Fisiologia) 615 7$aModels matemātics 615 7$aEquacions diferencials retardades 676 $a612.76 700 $aInsperger$b T$g(Tama?s),$0512939 702 $aMilton$b John 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910506390803321 996 $aDelay and uncertainty in human balancing tasks$92899830 997 $aUNINA