LEADER 06439nam 22004213 450 001 9910502653703321 005 20211214151246.0 010 $a3-662-63772-3 035 $a(CKB)4100000012038127 035 $a(MiAaPQ)EBC6738533 035 $a(Au-PeEL)EBL6738533 035 $a(OCoLC)1281975059 035 $a(EXLCZ)994100000012038127 100 $a20211214d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHydropneumatic Suspension Systems 205 $a2nd ed. 210 1$aBerlin, Heidelberg :$cSpringer Berlin / Heidelberg,$d2021. 210 4$d©2022. 215 $a1 online resource (313 pages) 311 $a3-662-63771-5 327 $aIntro -- Preface -- Contents -- 1 Suspension Systems Basics -- 1.1 Requirements for Suspension Systems -- 1.1.1 Minimize Accelerations on the Isolated Side -- 1.1.2 Equalize Variations of Vertical Wheel Forces -- 1.2 Suspension Technology Basics -- 1.2.1 General Setup of a Suspension System -- 1.2.2 General Behavior of a Suspension System -- 1.2.3 Alteration of Suspension Parameters -- 1.3 Hydropneumatic Suspension Compared to Other Suspension Methods -- 1.3.1 Comparison of Spring Characteristics -- 1.3.2 Comparison of Damping Characteristics -- 1.3.3 Level Control -- 1.3.4 Non-functional Requirements -- 1.4 Applications for Hydropneumatic Suspension Systems -- 2 Spring and Damping Characteristics of Hydropneumatic Suspension Systems -- 2.1 General Setup and Working Principle -- 2.2 Spring Characteristics -- 2.2.1 Thermodynamic Background -- 2.2.2 Calculation Predeterminations -- 2.2.3 Non Preloaded Hydropneumatic Suspension Systems -- 2.2.4 Systems with Mechanical Preload -- 2.2.5 Systems with Constant Hydraulic Preload -- 2.2.6 Systems with Variable Hydraulic Preload -- 2.3 Damping Characteristics -- 2.3.1 Boundary Friction Damping -- 2.3.2 Fluid Friction Damping -- 2.3.3 End-of-Stroke Damping -- 2.4 Combined Operation of Spring and Damper -- 3 Dimensioning of the Hydropneumatic Suspension Hardware -- 3.1 Dimensioning of the Hydraulic Spring Components -- 3.1.1 Cylinder -- 3.1.2 Accumulator Gas Precharge -- 3.1.3 Detailed Calculation of p0 and V0 -- 3.2 Dimensioning of the Hydraulic Damping Elements -- 3.2.1 Single-Acting Cylinder in a System Without Hydraulic Preload -- 3.2.2 Double-Acting Cylinder in a System Without Hydraulic Preload -- 3.2.3 Double-Acting Cylinder in a System with Hydraulic Preload -- 3.2.4 End-of-Stroke Damping -- 4 Hydraulic Components Design -- 4.1 Cylinders -- 4.1.1 Function and Requirements -- 4.1.2 Types of Cylinders. 327 $a4.1.3 Sealing Elements -- 4.1.4 End-of-Stroke Damping -- 4.1.5 Types of Support Elements -- 4.2 Accumulators -- 4.2.1 Function and Requirements -- 4.2.2 Types of Accumulators -- 4.2.3 Methods to Reduce Diffusion Pressure Loss -- 4.2.4 Usage of Pressure Relief Valves -- 4.2.5 Integration into Available Design Space -- 4.3 Flow Resistors -- 4.3.1 Non Adjustable Orifices and Throttles -- 4.3.2 Flow Direction Depending Resistors -- 4.3.3 Adjustable Flow Resistors -- 4.4 Hydraulic Lines and Fittings -- 4.4.1 Function and Requirements -- 4.4.2 Required Flow Cross Section -- 4.4.3 Tubes -- 4.4.4 Hoses -- 4.4.5 Fittings -- 4.5 Control Manifolds -- 4.5.1 Functions and Requirements -- 4.5.2 Block Design -- 5 Level Control -- 5.1 Self-Pumping Suspension Elements -- 5.2 Mechanical Level Control with External Hydraulic Power Supply -- 5.3 Electronic Level Control with External Hydraulic Power Supply -- 5.3.1 Function -- 5.3.2 Hydraulic Circuits Using On/Off-Valves -- 5.3.3 Hydraulic Circuits Using Proportional Valves -- 5.3.4 Control Algorithms -- 5.4 Electronic Level Control with Dedicated Power Supply -- 6 Special Functions of Hydropneumatic Suspension Systems -- 6.1 Suspension Lockout -- 6.1.1 Lockout by Blocking the Hydraulic Circuit -- 6.1.2 Lockout at the Compression End Stop -- 6.1.3 "Quasi-lockout" Through High Spring Stiffness -- 6.2 Adjustment of the Zero Position -- 6.3 Alteration of Roll and Pitch Behavior -- 6.3.1 Coupling Cylinders on Corresponding Sides -- 6.3.2 Decoupling Cylinders -- 6.3.3 Coupling Double-Action Cylinders on Opposite Sides -- 6.4 Spring Rate Adjustment by Selective Connection of Accumulators -- 6.5 Tire-to-Ground Force Optimization in All-Wheel Suspension Systems -- 7 Suspension Testing -- 7.1 Goals of Suspension Testing -- 7.1.1 Functional Testing -- 7.1.2 Durability Testing -- 7.2 Test Scenarios and Methods. 327 $a7.3 Measurements, Evaluation and Optimization -- 7.3.1 Pressure -- 7.3.2 Position/Displacement -- 7.3.3 Acceleration -- 7.3.4 Online Versus Offline Evaluation -- 7.4 Typical Project Testing Steps -- 7.4.1 Initial Function Testing/Analysis -- 7.4.2 Hardware-In-The-Loop (HIL) Testing -- 7.4.3 Laboratory Functional Testing -- 7.4.4 Machine Functional Testing -- 7.4.5 Durability Testing -- 8 Design Examples -- 8.1 Tractor Front Axle Suspension TLS by John Deere -- 8.2 Passenger Car Axle Suspension by Citroen -- 8.3 Suspension Projects-Lessons Learned -- 9 Important Patents -- 9.1 Improvement of Suspension Characteristics -- 9.1.1 DE1755095 -- 9.1.2 DE19719076 -- 9.1.3 DE10107631 -- 9.1.4 DE10337600 -- 9.1.5 DE4221126 -- 9.1.6 DE4234217 -- 9.1.7 US9039021 -- 9.1.8 DE4223783 -- 9.1.9 US6167701 -- 9.1.10 DE19949152 -- 9.1.11 US6398227 -- 9.1.12 DE102008012704 -- 9.2 Roll Stabilization and Slope Compensation -- 9.2.1 GB890089 -- 9.2.2 DE3427508 -- 9.2.3 DE10112082 -- 9.2.4 US4411447 -- 9.2.5 US6923453 -- 9.3 Suspension Lockout -- 9.3.1 US3953040 -- 9.3.2 DE4308460 -- 9.3.3 DE4032893 -- 10 Looking into the Future -- 10.1 Components -- 10.2 Systems -- 10.3 Energy Consumption -- 10.4 Trend Towards Electronics -- Index of Symbols and Abbreviations -- Dimensions and Dimension Related Parameters -- Forces and Force Related Parameters -- Accumulator Related Parameters and Pressures -- Parameters Defining the Dynamic Suspension Behavior -- Miscellaneous Parameters -- General Use of Indices -- References -- Index. 608 $aElectronic books. 676 $a629.243 700 $aBauer$b Wolfgang$0165302 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910502653703321 996 $aHydropneumatic Suspension Systems$92568783 997 $aUNINA