LEADER 10162nam 2200565 450 001 9910497085803321 005 20230529121504.0 010 $a3-030-76951-8 035 $a(CKB)4940000000610925 035 $a(MiAaPQ)EBC6719203 035 $a(Au-PeEL)EBL6719203 035 $a(OCoLC)1267299113 035 $a(PPN)258052236 035 $a(EXLCZ)994940000000610925 100 $a20220611d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBiomedical visualisation$hVolume 10 /$fPaul M. Rea, editor 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (229 pages) 225 1 $aAdvances in Experimental Medicine and Biology ;$vVolume 1334 311 $a3-030-76950-X 327 $aIntro -- Preface -- Acknowledgements -- About the Book -- Contents -- Editors and Contributors -- Chapter 1: Evaluating the Efficacy and Optimisation of the Peer-Led Flipped Model Using TEL Resources Within Neuroanatomy -- 1.1 Introduction -- 1.1.1 Climate of Anatomy Education -- 1.1.2 Technology-Enhanced Learning (TEL) in Anatomy Education -- 1.1.3 Flipped Classroom (FC) -- 1.1.4 Lack of Evidence in Favour of Combining TEL and the FC -- 1.1.5 Near-Peer Teaching (NPT) -- 1.2 Methods -- 1.2.1 Study Setting and Population -- 1.2.2 Resource Development -- 1.2.3 Teaching Sessions -- 1.2.4 Assessment of Knowledge Gain -- 1.2.5 Analysis of Data -- 1.3 Results -- 1.3.1 Student Engagement -- 1.3.2 Educational Impact -- 1.3.3 Student Perceptions -- 1.4 Discussion -- 1.4.1 Student Experience of the Flipped Classroom -- 1.4.2 Effect of TEL Resources Within The FC -- 1.4.3 Effect of a Peer-Led Flipped Model -- 1.4.4 Limitations -- 1.4.5 Conclusion and Recommendations -- References -- Chapter 2: Observation of Patients´ 3D Printed Anatomical Features and 3D Visualisation Technologies Improve Spatial Awareness... -- 2.1 3D Visualisation in Medical Education: A Foreword -- 2.1.1 Haptics in Observation. Drawing in Observation -- 2.1.2 The HVOD Method -- 2.1.3 Spatial Awareness and Spatial Ability in Anatomy -- 2.1.4 Two HVOD Exercises for Improved Spatial Awareness -- 2.2 Cognition and Visuospatial Attention -- 2.2.1 Cognition and Visuospatial Learning -- 2.2.2 Sequencing of Visuospatial Comprehension in Neuroscience -- 2.3 Application Within Surgical Setting -- 2.3.1 Haptic Perception in Surgical Training -- 2.3.2 Visualisation Technology in Surgery: Interpreting `What the Machine Saw´ -- 2.3.3 Pre-Operative Planning Assistance -- 2.4 Summary and Future Directions -- References. 327 $aChapter 3: Pandemics, Protests, and Pronouns: The Changing Landscape of Biomedical Visualisation and Education -- 3.1 Definitions and Introduction -- 3.2 Pandemics: The Biomedical Education Implications of COVID-19 -- 3.3 Move to Online Delivery and Accessibility Concerns -- 3.4 Impact of COVID-19 on Anatomy Training -- 3.5 Protests: Black Lives Matter and Decolonisation of the Curriculum -- 3.6 BLM in Higher Education -- 3.7 Biomedical Visualisation: A Source of Perpetuating Colonial Curricula? -- 3.8 Broader Consideration of Inequality in Imagery -- 3.9 Pronouns: A Look at the Heteronormative Assumptions When Transgender Individuals Exist -- 3.10 Why It All Matters? The Power of Imagery -- 3.11 Conclusion -- 3.12 Practice Points -- References -- Chapter 4: What Not to Do with PPE: A Digital Application to Raise Awareness of Proper PPE Protocol -- 4.1 Introduction -- 4.1.1 Aims and Objectives -- 4.2 Education on the Use of PPE -- 4.2.1 PPE Education: Training and Guidance -- 4.2.1.1 Training on Proper PPE Use: Literature -- 4.2.1.2 Guidance on Proper PPE Use: Literature -- 4.2.2 What Not to Do with PPE -- 4.2.3 Summary of Findings -- 4.3 Methods and Materials -- 4.3.1 Materials -- 4.3.2 Methods -- 4.3.3 Digital Design -- 4.3.4 3D Model Development -- 4.3.4.1 Identification of PPE Violations -- 4.3.4.2 Modelling -- 4.3.4.3 Animation -- 4.3.5 App Development -- 4.3.5.1 User Interface Set-Up -- 4.3.5.2 Interactive Components -- 4.3.5.3 Build to Android -- 4.4 Results: Application Development Outcome -- 4.4.1 Main Menu -- 4.4.2 Instructions -- 4.4.3 Scenario Selection -- 4.4.4 Scenario 1: Phone Contamination -- 4.4.5 Scenario 1: Phone Contamination with Visible Transmission -- 4.4.6 Scenario 2: Mask Contamination -- 4.4.7 Scenario 2: Mask Contamination with Visible Transmission -- 4.5 Discussion -- 4.5.1 Reflection on the Design Process. 327 $a4.5.2 Limitations -- 4.5.2.1 Animations -- 4.5.2.2 Models -- 4.5.2.3 Future Directions of Work -- 4.6 Conclusion -- References -- Chapter 5: The Embryonic re-Development of an Anatomy Museum -- 5.1 History and Context -- 5.2 Visualising Embryos -- 5.3 Visualising Discourse around Menstruation -- 5.4 The Gendered Body and the Lack of Diverse Representation in Gynaecological Images -- 5.5 The Role of the Illustrator -- References -- Chapter 6: Visualising the Link Between Carpal Bones and Their Etymologies -- 6.1 Theoretical Background -- 6.1.1 Introduction -- 6.1.2 Why Carpal Bones? -- 6.1.3 The Study of Etymology and Its Use in Medicine -- 6.1.3.1 The Study of Etymology -- 6.1.3.2 Relevance of Etymology in the Medical Field -- 6.1.4 The Link Between Knowledge of Etymology and Successful Learning of Anatomy in Medical Students -- 6.1.4.1 How Do We Learn? Three Learning Outcomes -- 6.1.4.2 How Etymological Understanding Aids Anatomical Learning in Medical Students -- 6.1.5 Use of Digital Technology in Learning -- 6.1.5.1 Current Teaching Methods -- 6.1.5.2 How Visualisation Techniques Aid in Student Learning -- 6.1.5.3 Benefits of E-learning and Digital Technology Use in Learning -- 6.1.6 Conclusion -- 6.2 Aims and Hypothesis -- 6.2.1 Research Questions -- 6.3 Materials and Methods -- 6.3.1 Materials -- 6.3.2 Methods -- 6.3.2.1 Design and Development -- Concept -- 3D Bone Model Production -- Application Development -- 6.4 Evaluation -- 6.4.1 Research Evaluation Methods -- 6.4.1.1 Materials and Methods -- 6.4.1.2 Experimental Protocol -- Carpal Bone Pre-test and Post-test -- Mobile Application Use -- Usability Questionnaire -- 6.4.1.3 Ethics Approval -- 6.5 Results -- 6.5.1 Participants -- 6.5.2 Carpal Bone Pre-test and Post-test Results -- 6.5.3 Application Use -- 6.5.4 Participant Questionnaire Results -- 6.5.4.1 Screening Questions -- Usefulness. 327 $aEase of Use -- Ease of Learning -- Satisfaction -- 6.5.4.2 Qualitative Comments -- 6.6 Discussion -- 6.6.1 Summary of Findings -- 6.6.2 Limitations -- 6.6.3 Post-evaluation Modifications -- 6.6.4 Future Development -- 6.7 Conclusion -- References -- Chapter 7: Augmented Reality Application of Schizocosa ocreata: A Tool for Reducing Fear of Arachnids Through Public Outreach -- 7.1 Introduction -- 7.1.1 Background Review -- 7.1.2 Rationale -- 7.1.3 Objectives -- 7.2 Methods -- 7.2.1 Application Purpose and Goal -- 7.2.2 Materials (Table 7.1) -- 7.2.3 Design and Development -- 7.2.3.1 Unity Basic Set-up -- 7.2.3.2 3D Modelling -- 7.2.3.3 Texturing -- 7.2.3.4 Rigging and Animation -- 7.2.3.5 Augmented Reality Development -- 7.2.3.6 Implementation of Textual Information -- 7.3 Results -- 7.4 Discussions -- 7.4.1 Limitations -- 7.4.2 Future Development -- 7.5 Conclusion -- References -- Chapter 8: The Surgical Art Face: Developing a Bespoke Multimodal Face Model for Reconstructive Surgical Education -- 8.1 Introduction -- 8.1.1 Reconstructive Surgery -- 8.1.2 Reconstructive Ladder -- 8.2 Facial Reconstructive Surgery -- 8.2.1 What Knowledge and Skills Do Facial Surgeons Need? -- 8.2.2 What Is the Ideal Simulation Tool to Train Surgeons to Perform Facial Surgery? -- 8.3 Development of the Surgical Art Face -- 8.4 Facial Surgery Simulation Using the Surgical Art Face in Multi-disciplinary Settings -- 8.5 Conclusion -- References -- Chapter 9: Modernizing Medical Museums Through the 3D Digitization of Pathological Specimens -- 9.1 Background -- 9.2 Digitization and Processing -- 9.2.1 Specimen Selection and Digitization Methods -- 9.2.2 External Surface Capture -- 9.2.2.1 NextEngine Scanner -- 9.2.2.2 Go!Scan 50 3D Scanner -- 9.2.3 Internal Surface Capture -- 9.2.3.1 North Star Imaging Micro-CT Scanner -- 9.2.3.2 Mimics Workflow -- 9.2.3.3 3D Slicer Workflow. 327 $a9.2.4 Further Model Preparation -- 9.3 Dissemination and Applications -- 9.3.1 Dissemination -- 9.3.1.1 MorphoSource -- 9.3.1.2 Sketchfab -- 9.3.1.3 Additional Dissemination -- 9.3.2 3D Printing -- 9.3.3 Education Applications -- 9.3.4 Research Applications -- 9.4 Summary -- References -- Chapter 10: An Introduction to Biomedical Computational Fluid Dynamics -- 10.1 Introduction -- 10.2 Computational Fluid Dynamics (CFD) -- 10.2.1 What Is CFD? -- 10.2.2 Governing Equations -- 10.2.2.1 Conservation of Mass (Continuity Equation) -- 10.2.2.2 Conservation of Momentum -- 10.2.3 Properties of Fluids and Fluid Flows -- 10.2.4 Constructing a CFD Simulation -- 10.2.4.1 Pre-processing -- 10.2.4.2 Numerical Solution and Solvers -- 10.2.4.3 Post-processing -- 10.2.4.4 Verification and Validation -- 10.2.4.5 Benefits and Limitations of CFD -- 10.3 CFD in Biomedical Research -- 10.3.1 Cardiovascular Flows -- 10.3.2 Respiratory Flow -- 10.3.3 Additional Areas of CFD Application -- 10.3.4 Medical Device Testing and Development -- 10.4 Summary and Future Directions -- References. 410 0$aAdvances in experimental medicine and biology ;$vVolume 1334. 606 $aBiomedical engineering 606 $aThree-dimensional imaging in medicine 606 $aVisualització tridimensional$2thub 606 $aEnginyeria biomèdica$2thub 608 $aLlibres electrònics$2thub 615 0$aBiomedical engineering. 615 0$aThree-dimensional imaging in medicine. 615 7$aVisualització tridimensional 615 7$aEnginyeria biomèdica 676 $a610.28 702 $aRea$b Paul$g(Paul M.), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910497085803321 996 $aBiomedical Visualisation$91995451 997 $aUNINA