LEADER 03121 am 2200529 n 450 001 9910496004103321 005 20200130 010 $a979-1-03-510379-8 024 7 $a10.4000/books.psorbonne.46693 035 $a(CKB)5590000000429694 035 $a(FrMaCLE)OB-psorbonne-46693 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/85926 035 $a(PPN)26796983X 035 $a(EXLCZ)995590000000429694 100 $a20201209j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aLes ingénieurs des travaux publics et la transformation des métropoles américaines, 1870-1910 /$fHélène Harter 210 $aParis $cÉditions de la Sorbonne$d2020 215 $a1 online resource (444 p.) 225 1 $aInternationale 311 $a2-85944-415-7 330 $aÀ la fin du XIXe siècle au moment où la Révolution industrielle fait des États-Unis un pays tourné vers le progrès industriel et technique, un nouvel acteur s'impose sur la scène urbaine : l'ingénieur des travaux publics. Grâce aux équipements qu?il réalise, les métropoles se transforment radicalement. La modernisation des réseaux d?eau et des égouts fait reculer les épidémies, la création d'espaces verts améliore le cadre de vie, tandis que la construction d'ouvrages d'art, comme le pont de Brooklyn à New York, facilite la circulation. L'aptitude à l?innovation des ingénieurs municipaux américains est telle qu'ils deviennent des références en matière de travaux publics, en Amérique, mais aussi en Europe. S'intéresser à leur ?uvre permet donc de mieux comprendre comment les États-Unis devienne à la fin du XIXe siècle une puissance technique de premier plan. L'influence de ces ingénieurs ne se limite pas cependant aux seules questions techniques. En effet, en recrutant ces hommes, les métropoles américaines posent les bases d'un gouvernement par l'expertise qui sera largement plébiscité au XXe siècle. On est loin de l'image corrompue qui est généralement associée aux villes à celle époque. En analysant le rôle des ingénieurs municipaux, c'est en fait les réalités urbaines de la fin du XIXe siècle que nous cernons mieux. 606 $aMunicipal engineering$zUnited States 606 $aPublic works$zUnited States 606 $aCity planning$zUnited States 606 $aMunicipal engineers$zUnited States 610 $aingénieur 610 $amétropole américaine 610 $aRévolution industrielle 610 $aingénieur des travaux publics 610 $amodernisation 610 $atravail public 615 0$aMunicipal engineering 615 0$aPublic works 615 0$aCity planning 615 0$aMunicipal engineers 676 $a600 700 $aHarter$b Hélène$01238679 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910496004103321 996 $aLes inge?nieurs des travaux publics et la transformation des me?tropoles ame?ricaines, 1870-1910$92874606 997 $aUNINA LEADER 04515nam 2200481z- 450 001 9910557662003321 005 20211118 035 $a(CKB)5400000000044886 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/73704 035 $a(oapen)doab73704 035 $a(EXLCZ)995400000000044886 100 $a20202111d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aShaping the Brain by Neuronal Cytoskeleton: From Development to Disease and Regeneration 210 $cFrontiers Media SA$d2020 215 $a1 online resource (185 p.) 311 08$a2-88963-552-X 330 $aThe coordinated action of the different cytoskeletal polymers--microtubules, actin filaments and neurofilaments-- is essential for the establishment, remodeling and maintenance of neuronal architecture throughout the neuron lifetime. Neurons are among the most polarized cells, with a long thin axon and multiple thicker and shorter dendrites. Achieving this complex morphology, and the precise and accurate formation of an intricate network of synaptic contacts is critical for the proper transmission and reception of signals in the brain. Neuronal polarization precedes axon outgrowth and the subsequent differentiation of short neurites into dendrites, as part of the neuronal differentiation program that involves both intrinsic and extrinsic signals that converge at the cytoskeletal level. Growth cones, which are sensory and locomotor structures located at the tip of growing axons, are key elements in the transduction of extracellular cues into cytoskeletal changes, guiding axons to their right destinations. Neuronal migration, another crucial process during brain development, occurs in close coordination with neuronal differentiation. Migration involves as well an extensive rearrangement of neuronal cell shape that relies on cytoskeleton reorganization. Further processes, such as dendritic spine formation and growth, establishment of synaptic contacts or synaptic plasticity in mature neurons also depend on cytoskeletal dynamics. Fine-tune regulation of neuronal cytoskeleton is therefore crucial for the maintenance of neuronal integrity and functionality. Mutations in genes that code for cytoskeletal proteins often have deleterious effects in neurons, such as abnormal migration or differentiation, deficient axonal transport of organelles and synaptic vesicles, or impaired synaptic signaling. Several human Nervous System disorders, including neurodevelopmental, psychiatric, and neurodegenerative diseases, have been linked to cytoskeletal dysfunction. Cytoskeletal reorganization is also crucial to regulate nerve cell repair following Nervous System injury. Many of the pathways that control cell-intrinsic axon regeneration lead to axon cytoskeletal remodeling. Moreover, most extracellular cues that inhibit regeneration of damaged axons in Central Nervous System following traumatic injury or neurodegeneration, are known to modulate cytoskeletal dynamics and organization. Based on these findings, regulators of cytoskeleton dynamics have emerged as promising therapeutic targets in several brain disorders and in the context of regeneration of injured axons. Hence, remodeling of neuronal cytoskeleton underlies all the dramatic morphological changes that occur in developing and adult neurons. Understanding the specific molecular mechanisms that control cytoskeleton rearrangements in neurons is far from complete. This Frontiers Research Topic gathers a selection of articles focused on the diverse and key roles of cytoskeleton in neuronal biology. 517 $aShaping the Brain by Neuronal Cytoskeleton 606 $aNeurosciences$2bicssc 606 $aScience: general issues$2bicssc 610 $aactin cytoskeleton 610 $aastrocyte cytoskeleton 610 $amicrotubules (MTs) 610 $aneuron 610 $aneuronal cytoskeleton 610 $atau 615 7$aNeurosciences 615 7$aScience: general issues 700 $aLaura Sayas$b C$4edt$01302165 702 $aMendes Sousa$b Monica$4edt 702 $aAvila$b Jesus$4edt 702 $aLaura Sayas$b C$4oth 702 $aMendes Sousa$b Monica$4oth 702 $aAvila$b Jesus$4oth 906 $aBOOK 912 $a9910557662003321 996 $aShaping the Brain by Neuronal Cytoskeleton: From Development to Disease and Regeneration$93026187 997 $aUNINA