LEADER 11160nam 2200577 450 001 9910495252103321 005 20231110225204.0 010 $a3-030-54564-4 035 $a(CKB)4100000012009052 035 $a(MiAaPQ)EBC6712967 035 $a(Au-PeEL)EBL6712967 035 $a(OCoLC)1265461604 035 $a(PPN)25735185X 035 $a(EXLCZ)994100000012009052 100 $a20220605d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModern approaches to augmentation of brain function /$fIoan Opris, Mikhail A. Lebedev, Manuel F. Casanova 210 1$aCham, Switzerland :$cSpringer International Publishing,$d[2021] 210 4$d©2021 215 $a1 online resource (747 pages) 225 1 $aContemporary Clinical Neuroscience 311 $a3-030-54563-6 327 $aIntro -- Foreword -- Preface -- Human Intellectual Capacity and Its Growth -- Modern Approaches to Brain Augmentation -- Part I: Stimulating the Brain -- Part II: Brain-Computer Interfaces -- Part III: Augmenting Cognitive Function -- Part IV: Futuristic Approaches to Augmentation -- Part V: Augmenting Behavior -- Part VI: Augmenting Cognition and Emotion -- Part VII: Pharmacological Augmentation -- Contents -- Part I: Stimulating the Brain -- Using Electrical Stimulation to Explore and Augment the Functions of Parietal-Frontal Cortical Networks in Primates -- 1 Introduction -- 2 Electrical Stimulation: A Selective and Brief History -- 3 The Action-Specific Parietal-Frontal Network of Primates -- 4 The Functions of the Action-Specific Domains in Primates -- 5 The Basal Ganglia: Further Steps in the Action Selection Hierarchy -- 6 Using Electrical Stimulation to Augment Action Selection -- References -- Spinal Cord Injury and Epidural Spinal Cord Stimulation -- 1 Introduction: Revisiting Low Expectations for Neurological Recovery After "Complete" SCI -- 2 Reinterpreting the Lack of Apparent Success of Drugs, Cell Transplants, and Biologics -- 2.1 Early Neuromodulation: Electrical Stimulation of Muscle to Restore Function -- 2.2 Spinal Cord Stimulation -- 3 Concepts that Supported the Testing of Epidural Stimulation for Recovery in SCI -- 3.1 Discomplete Spinal Cord Injury -- 3.2 Early ES Observations in SCI Subjects to Treat Spasticity -- 3.3 Neuroplasticity -- 3.4 The Emerging Understanding of Intraspinal Connectivity -- 3.5 Intraspinal Circuits for Reciprocating Activity -- 3.6 Spontaneous Locomotor Activity Observed After Chronic Human SCI -- 4 Epidural Electrical Stimulation, Spinal Cord Injury, and Locomotion -- 4.1 Locomotor Activity Resulting from Electrical Epidural Stimulation -- 4.2 Locomotor Training and Sensory Input. 327 $a4.3 Reported Effects of ES on Autonomic Functions -- 5 Transcutaneous Stimulation -- 6 Potential ES Synergies -- 7 The Essential Role of Spinal Cord Repair Research -- 8 Conclusions -- References -- Neurostimulator for Hippocampal Memory Prosthesis -- 1 Introduction -- 2 Materials and Design -- 2.1 Stimulation Pattern Generator Circuit -- 2.2 Stimulus Artifact Suppression Technique -- 2.3 Electrochemical Properties -- 2.4 System Architecture -- 2.5 Power Calculation -- 2.6 System Cost -- 3 Experimental Methods -- 3.1 Design Characterization -- 3.2 In Vivo Evaluation -- 4 Notes -- References -- Modern Approaches to Augmenting the Brain Functions -- 1 Introduction -- 2 Augmentation Approaches -- 2.1 Neuromodulation -- 2.2 Brain-Computer Interfaces -- 2.3 Futuristic Transfer of Brain Ability -- 3 Augmenting Brain Functions -- 3.1 Sensory Augmentation -- 3.2 Motor Augmentation -- 3.3 Augmentation of Cognition -- 3.4 Augmentation of Emotions -- 4 Clinical Applications -- 4.1 Autism -- 4.2 Depression -- 4.3 Alzheimer's Disease -- 4.4 Post-traumatic Stress Disorder (PTSD) -- 4.5 Drug Addiction -- 4.6 Parkinson's Disease -- 4.7 Seizures -- 5 Technology for Brain Augmentation -- 5.1 Neural Engineering -- 5.2 Optogenetic Augmentation of Brain Function -- 5.3 Neural Nanotechnology -- 5.4 Neural Spintronics -- 5.5 Tools Advances Based on the Interaction with the Brain -- 5.6 Devices for Brain Augmentation -- 6 Ethical Issues -- 7 Conclusion -- References -- Part II: Brain-Computer Interfaces -- Brain Machine Interfaces Within a Critical Perspective -- 1 Introduction -- 2 Roles in Cognition and Behavior -- 3 Sensory-Motor Functions -- 4 Ontological Criticalities -- 5 Interfacing With the Neural Code -- 6 Cascades of Complex Factors -- 7 Neuroprothesis and Historical Attempts -- 8 Conclusions -- References. 327 $aAn Implantable Wireless Device for ECoG and Cortical Stimulation -- 1 Introduction -- 2 Preliminary Experience in Primates -- 3 Clinical Applications of Wireless ECoG: Preliminary Experience in Epilepsy Surgery -- 4 Conclusions -- References -- BCI Performance Improvement by Special Low Jitter Quasi-Steady-State VEP Paradigm -- 1 Introduction -- 2 Materials and Methods -- 2.1 Continuous Loop Averaging Deconvolution (CLAD) -- 2.2 Stimulator and Stimuli Design -- 2.3 EEG Recording and Signal Processing -- 2.4 Classification -- 3 Results -- 3.1 ANOVA Results -- 3.2 SSVEP Vs. QSS-VEP Comparison -- 4 Discussions -- 5 Conclusion -- References -- Communication with Brain-Computer Interfaces in Medical Decision-Making -- 1 Introduction -- 2 Decoding and Communicating -- 3 Extracortical and Intracortical BCIs for Communication -- 4 Ethical Issues in BCI-Based Communication -- 5 A Case Study -- 6 Conclusion -- References -- Part III: Augmenting Cognitive Function -- Neuroprotection and Neurocognitive Augmentation by Photobiomodulation -- 1 Introduction -- 2 Part 1: Animal Studies-Prevention of Neurodegeneration and Behavioral Deficits by Photobiomodulation -- 2.1 Objectives of Animal Studies of Neuroprotection by Photobiomodulation -- 2.2 Significance of Animal Studies of Neuroprotection by Photobiomodulation -- 2.3 Cytochrome Oxidase as a Molecular Target of Photobiomodulation -- 2.4 In Vitro Neuroprotective Effects of Cytochrome Oxidase Stimulation by Photobiomodulation -- 2.5 In Vivo Light Delivery and Dosing Considerations -- 2.6 Mitochondrial Dysfunction in Neurodegenerative Disorders and Therapeutic Role of Photobiomodulation -- 2.7 Photobiomodulation Prevents Impairment of Visual Function in a Rat Model of Optic Neuropathy Induced by Mitochondrial Dysfunction -- 2.8 Photobiomodulation Prevents Structural Retinal Damage in the Model of Optic Neuropathy. 327 $a2.9 Protective Effects of Photobiomodulation Are Not Related to Photodegradation of Rotenone -- 2.10 Preservation of Visual Function and Retinal Structure Are Not Mediated by Isoflurane Exposure -- 2.11 Photobiomodulation Prevents Decreases in Cell Respiration in Brain Homogenates In Vitro -- 2.12 Photobiomodulation Increases Brain Antioxidant Capacity in a Dose-Response Manner In Vivo -- 2.13 A Single Dose of Photobiomodulation Enhances Brain Cytochrome Oxidase Activity in a Hormetic Fashion In Vivo -- 2.14 Fractionated Photobiomodulation Increases Brain Cytochrome Oxidase Activity in a Dose-Response Manner In Vivo -- 3 Part 2: Human Studies-Augmentation of Neurocognitive Functions by Photobiomodulation -- 3.1 Introduction and Objectives of the Human Studies -- 3.2 Significance of Human Cognitive Enhancement by Photobiomodulation -- 3.3 Cytochrome Oxidase as Molecular Target for Human Cognitive Enhancement -- 3.4 Need to Investigate How TILS Affects Human Neurocognitive Function -- 3.5 Overview of Our Approach for Human Cognitive Enhancement by Photobiomodulation -- 3.6 Cognitive-Enhancing Effects of TILS of the Human Prefrontal Cortex -- 3.6.1 Cognitive Benefits of TILS in Older Participants -- 3.7 Neurophysiological Effects of TILS of the Human Prefrontal Cortex -- 4 Conclusions -- References -- Avoiding Partial Sleep: The Way for Augmentation of Brain Function -- 1 Sleep and "Human Factor" -- 2 Peculiarities of Sleep Deprivation Effects -- 3 Modern Theories of Sleep -- 4 Phenomenon of Partial (Local) Sleep -- 5 Partial Sleep and Cognitive Impairments After Sleep Deprivation -- 6 Whether Cortical EEG Reflects Peculiarity of Brain Activity in Wakefulness and Sleep, or Just Pattern of the Cortical Afferent Flow? -- 7 Which Signals Could Provide Periodic and Synchronous Afferentation During Sleep?. 327 $a8 Experimental Validation of the Visceral Hypothesis of Sleep -- 9 The Visceral Sleep Theory and Observations of "Slow-Wave" Activity in the Cortical Slabs and Slices -- 10 The Pathways for the Visceral Afferentation to the Cerebral Cortex During Sleep -- 11 K-Complexes and Visceral Afferentation, Use Dependency, and Sleep Homeostasis -- 12 Mechanism of Sleep Initiation and Features of Local Sleep -- 13 Conclusion -- References -- Augmentation of Brain Functions by Nanotechnology -- 1 Nanotechnologies in Neuroscience -- 2 Nanoparticles -- 3 Nanoparticle Formulations in the Diagnosis and Therapy of Alzheimer's Disease -- 4 Multimodal Nanoparticles Labeling of Neurons -- 4.1 Quantum Dots -- 5 Nanoparticle-Based Therapeutics for Brain Injury -- 6 Nanotherapeutic Approaches -- 6.1 Exosomes as a Communication Tool -- 7 Overcoming BBB to Treat Neurodegenerative Diseases -- 8 Neuromodulation of the Brain -- 9 Noninvasive Neuromodulation by Magneto-Electric Nanoparticles -- 10 Nanoelectrical and Chemical Stimulation -- 11 Neuroengineering -- 12 Sensors -- 12.1 Magnetic Tunneling Junctions Sensor -- 12.2 Optical Probes for Neurobiological Sensing and Imaging -- 13 Biosensors -- 14 Neuronal Recording -- 15 Multisite Attenuated Intracellular Recordings by Extracellular Multielectrode Arrays -- 16 Interface Microelectrodes for Ultrasensitive Monitoring of Alzheimer's Disease -- 17 Resistive Memory Devices -- 18 Brain-Machine Interfaces -- 19 Conclusion -- 20 Future Directions -- References -- The Impact of Aging and Age-Related Comorbidities on Stroke Outcome in Animal Models and Humans -- 1 Introduction -- 2 The Risk of Cerebral Ischemia Increases with Age -- 3 Cerebral Ischemia and Comorbidities -- 4 Stroke Models Using Aged Animals Are Clinically More Relevant -- 5 Age-Dependent Recovery from Cerebral Ischemia. 327 $a6 Spontaneous Stroke Recovery in Aged Patients and Animals. 410 0$aContemporary Clinical Neuroscience 606 $aNeurosciences$xResearch 606 $aNeurociències$2thub 606 $aInvestigació mèdica$2thub 608 $aLlibres electrònics$2thub 615 0$aNeurosciences$xResearch. 615 7$aNeurociències 615 7$aInvestigació mèdica 676 $a616.890072 700 $aOpris?$b Ioan$0964613 702 $aLebedev$b Mikhail$g(Mikhail A.), 702 $aCasanova$b Manuel F. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910495252103321 996 $aModern Approaches to Augmentation of Brain Function$92188549 997 $aUNINA