LEADER 03191nam 22006255 450 001 9910495248403321 005 20251202142015.0 010 $a1-0716-1344-8 024 7 $a10.1007/978-1-0716-1344-3 035 $a(CKB)5600000000003489 035 $a(MiAaPQ)EBC6714602 035 $a(Au-PeEL)EBL6714602 035 $a(PPN)257351191 035 $a(BIP)81420786 035 $a(BIP)78100292 035 $a(DE-He213)978-1-0716-1344-3 035 $a(EXLCZ)995600000000003489 100 $a20210828d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNumerical Approximation of Hyperbolic Systems of Conservation Laws /$fby Edwige Godlewski, Pierre-Arnaud Raviart 205 $a2nd ed. 2021. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2021. 215 $a1 online resource (846 pages) 225 1 $aApplied Mathematical Sciences,$x2196-968X ;$v118 311 08$a1-0716-1342-1 320 $aIncludes bibliographical references and index. 327 $aNonlinear hyperbolic systems in one space dimension -- Gas dynamics and reacting flows -- Finite volume schemes for one-dimensional systems -- The case of multidimensional systems -- An introduction to boundary conditions -- Source terms. 330 $aThis monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation. 410 0$aApplied Mathematical Sciences,$x2196-968X ;$v118 606 $aNumerical analysis 606 $aMathematical analysis 606 $aMathematical physics 606 $aNumerical Analysis 606 $aAnalysis 606 $aMathematical Methods in Physics 615 0$aNumerical analysis. 615 0$aMathematical analysis. 615 0$aMathematical physics. 615 14$aNumerical Analysis. 615 24$aAnalysis. 615 24$aMathematical Methods in Physics. 676 $a533.2 700 $aGodlewski$b Edwige$061081 702 $aRaviart$b Pierre-Arnaud$f1939- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910495248403321 996 $aNumerical approximation of hyperbolic systems of conservation laws$9375635 997 $aUNINA