LEADER 03503nam 22006975 450 001 9910495161903321 005 20250327111341.0 010 $a9789811607110 010 $a9811607117 024 7 $a10.1007/978-981-16-0711-0 035 $a(CKB)5600000000003516 035 $a(MiAaPQ)EBC6715913 035 $a(Au-PeEL)EBL6715913 035 $a(PPN)257355294 035 $a(DE-He213)978-981-16-0711-0 035 $a(EXLCZ)995600000000003516 100 $a20210830d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTime Series Analysis for the State-Space Model with R/Stan /$fby Junichiro Hagiwara 205 $a1st ed. 2021. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2021. 215 $a1 online resource (350 pages) 311 08$a9789811607103 311 08$a9811607109 327 $aIntroduction -- Fundamental of probability and statistics -- Fundamentals of handling time series data with R -- Quick tour of time series analysis -- State-space model -- State estimation in the state-space model -- Batch solution for linear Gaussian state-space model -- Sequential solution for linear Gaussian state-space model -- Introduction and analysis examples of a well-known component model -- Batch solution for general state-space model -- Sequential solution for general state-space model -- Example of applied analysis in general state-space model. 330 $aThis book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader?s analytical capability. . 606 $aStatistics 606 $aMathematical statistics$xData processing 606 $aStatistics 606 $aEconometrics 606 $aMacroeconomics 606 $aApplied Statistics 606 $aStatistics and Computing 606 $aBayesian Inference 606 $aStatistical Theory and Methods 606 $aQuantitative Economics 606 $aMacroeconomics and Monetary Economics 615 0$aStatistics. 615 0$aMathematical statistics$xData processing. 615 0$aStatistics. 615 0$aEconometrics. 615 0$aMacroeconomics. 615 14$aApplied Statistics. 615 24$aStatistics and Computing. 615 24$aBayesian Inference. 615 24$aStatistical Theory and Methods. 615 24$aQuantitative Economics. 615 24$aMacroeconomics and Monetary Economics. 676 $a519.55 700 $aHagiwara$b Junichiro$0908140 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910495161903321 996 $aTime Series Analysis for the State-Space Model with R$92031341 997 $aUNINA