LEADER 05454nam 22006131 450 001 9910493743403321 005 20170816142527.0 010 $a981-4415-49-9 035 $a(CKB)2670000000425262 035 $a(EBL)1389079 035 $a(OCoLC)861528046 035 $a(SSID)ssj0000682875 035 $a(PQKBManifestationID)12294827 035 $a(PQKBTitleCode)TC0000682875 035 $a(PQKBWorkID)10688486 035 $a(PQKB)10528955 035 $a(MiAaPQ)EBC1389079 035 $a(WSP)00000270 035 $a(EXLCZ)992670000000425262 100 $a19860417d1989 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuantum theory of angular momentum $eIrreducible tensors, spherical harmonics, vector coupling coefficients 3 nj symbols /$fby D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii 210 1$aSingapore ;$aPhiladelphia :$cWorld Scientific Pub.,$d1989. 215 $a1 online resource (528 p.) 300 $aTranslation of: Kvantovaia teoriia uglovogo momenta. 311 $a1-299-83327-6 311 $a9971-5-0107-4 320 $aIncludes bibliographical references. 327 $aCONTENTS; PREFACE; INTRODUCTION: BASIC CONCEPTS; Chapter 1 ELEMENTS OF VECTOR AND TENSOR THEORY; 1.1. COORDINATE SYSTEMS. BASIS VECTORS; 1.1.1. Cartesian Coordinate System; 1.1.2. Polar Coordinate System; 1,1.3. Spherical Coordinate System; 1.1.4, Helicity Basis Vector; 1.1.5. Relations Between Different Basis Vectors; 1.2. VECTORS. TENSORS; 1.2.1. Vector Components; 1.2.2. Scalar Product of Vectors; 1.2.3. Vector Product of Vectors; 1.2.4. Products Involving Three or More Vectors; 1.2.5. Tensors ?ik and ?ikl; 1.3. DIFFERENTIAL OPERATIONS; 1.3.1. Operator V; 1.3.2. Laplace Operator 327 $a1.3.3. Differential Operations on Scalars and Vectors1.4. ROTATIONS OF COORDINATE SYSTEM; 1.4.1. Description of Rotations in Terms of the Euler Angles; 1.4.2. Description of Rotations in Terms of Rotation Axis and Rotation Angle; 1.4.3. Description of Rotations in Terms of Unitary 2x2 Matrices. Cayley-Klein Parameters.; 1.4.4. Relations Between Different Descriptions of Rotations; 1.4.5. Rotation Operator; 1.4.6. Transformation of Cartesian Vectors and Tensors Under Rotations of Coordinate Systems. Rotation Matrix a; 1.4.7. Addition of Rotations; Chapter 2 ANGULAR MOMENTUM OPERATORS 327 $a2.1. TOTAL ANGULAR MOMENTUM OPERATOR2.1.1. Definition; 2.1.2. Commutation Relations; 2.1.3. Coordinate Inversion. Time Reversal; 2.1.4. Total Angular Momentum of a System. Orbital and Spin Angular Momenta; 2.2. ORBITAL ANGULAR MOMENTUM OPERATOR; 2.2.1. Definition; 2.2.2. Commutation Relations; 2.2.3. Explicit Form; 2.3. SPIN ANGULAR MOMENTUM OPERATOR; 2.3.1. Definition; 2.3.2. Commutation Relations; 2.3.3. Explicit Form; 2.3.4. Traces of Products of Spin Matrices; 2.4. POLARIZATION OPERATORS; 2.4.1. Definition; 2.4.2. Explicit Form 327 $a2.4.3. Properties of LM(S) under Transformations of the Coordinate System2.4.5. Commutators and Anticommutators; 2.4.6. Traces of Products of Polarization Operators; 2.5. SPIN MATRICES FOR 5 = 1/2; 2.5.1. Explicit Form; 2.5.2. Commutators and Anticommutators; 2.5.3. Products of Spin Matrices; 2.5.4. Functions of Spin Matrices; 2.5.5. Rotation Operators; 2.5.6. Traces of Products of Spin Matrices (S = 1/2); 2.6. SPIN MATRICES AND POLARIZATION OPERATORS FOR S = 1; 2.6.1. Spin S = 1; 2.6.2. Explicit Form; 2.6.3. Products of Spin and Polarization Matrices; 2.6.4. Functions of Spin Matrices 327 $a2.6.5. Operators of Coordinate Rotations2.6.6. Traces of Products of Spin Matrices; Chapter 3 IRREDUCIBLE TENSORS; 3.1. DEFINITION AND PROPERTIES OF IRREDUCIBLE TENSORS; 3.1.1. Definition; 3.1.2. Covariant and Contravariant Components; 3.1.3. Transformation of Irreducible Tensors Under a Rotation of the Coordinate System; 3.1.4. Transformation of Irreducible Tensors Under Inversion of the Coordinate System; 3.1.5. Double Tensors; 3.1.6. Examples of Irreducible Tensors; 3.1.7. Direct and Irreducible Tensor Products. Commutators of Tensor Products; 3.1.8. Scalar Products of Irreducible Tensors 327 $a3.2. RELATION BETWEEN THE IRREDUCIBLE TENSOR ALGEBRA AND VECTOR AND TENSOR THEORY 330 $aThis is the most complete handbook on the quantum theory of angular momentum. Containing basic definitions and theorems as well as relations, tables of formula and numerical tables which are essential for applications to many physical problems, the book is useful for specialists in nuclear and particle physics, atomic and molecular spectroscopy, plasma physics, collision and reaction theory, quantum chemistry, etc. The authors take pains to write many formulae in different coordinate systems thus providing users with added ease in consulting this book. Each chapter opens with a comprehensive l 606 $aAngular momentum (Nuclear physics) 606 $aQuantum theory 615 0$aAngular momentum (Nuclear physics) 615 0$aQuantum theory. 676 $a530.1/2 700 $aVarshalovich$b D. A$g(Dmitrii? Aleksandrovich)$0920549 701 $aMoskalev$b A. N$0920550 701 $aKhersonskii?$b V. K$g(Valerii? Kel?manovich)$0920551 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910493743403321 996 $aQuantum theory of angular momentum$92064688 997 $aUNINA