LEADER 11177nam 2200553 450 001 9910488725403321 005 20231110211541.0 010 $a981-16-1284-6 035 $a(CKB)5590000000516529 035 $a(MiAaPQ)EBC6665426 035 $a(Au-PeEL)EBL6665426 035 $a(OCoLC)1258660862 035 $a(PPN)25808801X 035 $a(EXLCZ)995590000000516529 100 $a20220323d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRapid damage-free robotic harvesting of tomatoes /$fJizhan Liu, Zhiguo Li and Pingping Li 210 1$aGateway East, Singapore :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (469 pages) 225 1 $aSpringer Tracts in Mechanical Engineering 311 $a981-16-1283-8 320 $aIncludes bibliographical references. 327 $aIntro -- Foreword -- Preface -- Contents -- 1 History and Present Situations of Robotic Harvesting Technology: A Review -- 1.1 An Industry of Fresh-Eat Fruits and Vegetables and Its Labor-Cost Harvesting -- 1.2 The History and Current Situation of the Development of Robotic Harvesting Equipment in Global -- 1.2.1 Tomato Harvesting Robots -- 1.2.2 Fruit Harvesting Robot for Orchards -- 1.2.3 Harvesting Robots for Fruits and Vegetables -- 1.2.4 Other Fruit Harvesting Robots -- 1.2.5 Other Harvesting Robots -- 1.3 Summary and Prospect -- 1.3.1 The Continuous Progress of Robotic Harvesting Technology -- 1.3.2 Technical Keys to the Development of Harvesting Robot Technology -- 1.3.3 The Historical Characteristics of the Technology Development of the Harvesting Robots -- 1.3.4 The Breakthrough Points of the Technology Development of Harvesting Robots -- 1.3.5 Key Fields of Technology Development of Harvesting Robots -- References -- 2 Damage and Damage-Free Harvesting in Robotic Operation -- 2.1 Cause of Fruit Damage in Robot Harvesting -- 2.2 Passive Compliant Structure in Robotic Harvesting -- 2.2.1 Elastic Surface Material -- 2.2.2 Under-Actuated End-Effectors -- 2.2.3 Elastic-Medium Fingers -- 2.3 Active Compliance Control in Robotic Harvesting -- 2.4 The Robotic Speedy Damage-Free Harvesting -- 2.4.1 The Significance and Particularity of Robotic Speedy Damage-Free Harvesting -- 2.4.2 The Particularity of the Collision in Robotic Speedy Gripping of Fruit -- 2.4.3 The Research System of Speedy Damage-Free Harvesting -- References -- 3 The Physical and Mechanical Properties of Tomato Fruit and Stem -- 3.1 Summary -- 3.1.1 Research Significance -- 3.1.2 Content and Innovation -- 3.2 The Physical/Mechanical Properties Index System of Tomato Fruit-Stem Related to Robot's Harvesting -- 3.3 Physical Properties of Tomato Fruit and Stem. 327 $a3.3.1 Structure of Tomato Fruit and Stem -- 3.3.2 Physical Property of Tomato Fruit and Stem [3-5] -- 3.4 Mechanical Properties of Tomato Fruit Components [3] -- 3.4.1 Material, Equipment, and Method -- 3.4.2 Results and Analysis -- 3.5 Compressive Mechanical Properties of the Whole Tomato -- 3.5.1 The Compression Force-Deformation Properties [4, 5] -- 3.5.2 Creep Properties [33] -- 3.5.3 Stress Relaxation Properties [33] -- 3.5.4 Load-Unload Properties [33] -- 3.6 Frictional Mechanical Properties of Tomato Fruits [3] -- 3.6.1 Static and Sliding Friction Coefficients -- 3.6.2 Measurement of Rolling Resistance Coefficient -- 3.7 Mechanical Structure Model of the Whole Tomato Fruit -- 3.7.1 The Wheel-like Simplification Mechanical Structure of Fruit [4, 46] -- 3.7.2 Mechanical Properties of Tomatoes with Different Numbers of Locules [3] -- 3.8 Mechanical Damage in Tomato Fruits [3] -- 3.8.1 Mechanical Damage Mechanism of Tomato Fruit -- 3.8.2 Physiological Change of Tomatoes After Being Compress -- 3.9 The Properties of Tomato Stem -- 3.9.1 Stem System [5, 81] -- 3.9.2 Mechanical Properties of Tomato Fruit System [4, 5] -- 3.9.3 Results [4, 5] -- References -- 4 Development of Damage-Free Hand-Arm System for Tomato Harvesting -- 4.1 Summary -- 4.1.1 Research Significance -- 4.1.2 Content and Innovation -- 4.2 Development of Damage-Free Harvesting End-Effector -- 4.2.1 System Scheme Design of Damage-Free Harvesting End-Effector -- 4.3 Motion Configuration Scheme -- 4.4 System Components of the End-Effector -- 4.4.1 Mechanism Design of End-Effector [81] -- 4.4.2 Design of the Sensing System [81] -- 4.4.3 Design of Control System [81] -- 4.4.4 Design of Power Supply System [81] -- 4.4.5 Structure Design of the End-Effector [81] -- 4.4.6 Prototype and Its Performance Indicators [81] -- 4.4.7 Upper Lower Type End-Effector. 327 $a4.4.8 Passive-active Coupled Compliant End-Effector for Robot Tomato Harvesting [95] -- 4.5 Damage-Free Harvesting Hand-arm System Based on Commercial Manipulator [96] -- 4.5.1 Background and Needs -- 4.5.2 The Control System Structure of Commercial Manipulator [31] -- 4.5.3 Control System Integration Between the Manipulator and the End-Effector [31, 34] -- References -- 5 Mathematical Modeling of Speedy Damage-Free Gripping of Fruit -- 5.1 Summary -- 5.1.1 Research Significance -- 5.1.2 Content and Innovation -- 5.2 Experiment of Speedy Fruit Gripping and Special Collision Characteristics -- 5.2.1 Experiment of Speedy Fruit Gripping [1, 2] -- 5.2.2 Collision Characteristics of Speedy Fruit Gripping -- 5.3 The Special Collision Issue of Speedy Fruit Gripping -- 5.4 Dynamic Characteristics in Different Phases of Speedy Fruit Gripping [1] -- 5.5 Fruit Compression Model [1, 3] -- 5.5.1 The Viscoelastic Properties of Fruit and the Characterization of Constitutive Model -- 5.5.2 Burger's Modified Model for Characterization of Creep Properties of Whole Fruit -- 5.6 Complex Collision Model in Speedy Gripping of Fruit [1] -- 5.6.1 Phase of Constant-Speed Loading and Phase of Stress Relaxing -- 5.6.2 Phase of Collision Decelerating -- 5.7 The Basic Law of Collision in Robotic Gripping of Fruit [1] -- 5.7.1 The Law of Collision Force in Robotic Gripping of Fruit -- 5.7.2 The Influence of Initial Gripping Speed and Fruit Ripeness on Gripping Collision Time -- 5.7.3 The Influence of Initial Gripping Speed and Fruit Ripeness on Gripping Collision Deformation -- 5.7.4 The Influence of Initial Gripping Speed and Fruit Ripeness on Peak Collision Force -- 5.8 The Theoretical Calculation of the Time Consumption of Gripping [2] -- 5.8.1 The Stroke Composition of the Finger Gripping Process -- 5.8.2 Dimension Relation of Fruit Gripping with Robotic Fingers. 327 $a5.8.3 The Time Consumption Composition of the Finger Gripping Process -- 5.8.4 Selection of Damage-Free Control Mode -- 5.8.5 Time Calculation of Damage-Free Gripping -- 5.9 Collision Stage -- References -- 6 Simulation of Damage-Free Robotic Gripping of Fruit -- 6.1 Summary -- 6.1.1 Research Significance -- 6.1.2 Content and Innovation -- 6.2 Finite Element Model of Fruit -- 6.2.1 Viscoelastic Finite Element Model of the Whole Tomato Fruit [1] -- 6.2.2 Nonlinear Multi-component Finite Element Model of Tomato Fruit [3] -- 6.3 Simulation of Static Gripping Process [3] -- 6.3.1 Geometry Model Finger-Fruit Contacting Process -- 6.3.2 Creating Contact Pair -- 6.3.3 Model Verification Method -- 6.3.4 Prediction Method of Gripping Damage -- 6.3.5 The Component Stress Simulation of Different Loading Methods -- 6.4 Dynamic Simulation of Gripping Process [1] -- 6.4.1 The Software Implementation of Dynamic Gripping Simulation -- 6.4.2 The Establishment of System Virtual Prototype for Gripping -- 6.4.3 Simulation Analysis of Tomato Fruit Gripping with the End-Effector -- References -- 7 Modeling of the Vacuum Sucked Pulling of Tomato Fruit -- 7.1 Summary -- 7.1.1 Function of Vacuum Sucked Pulling in Robotic Harvesting [1] -- 7.1.2 Research Significance [1, 18] -- 7.1.3 Content and Innovation -- 7.2 Modeling of Mechanical Behavior for Sucking with Suction Pad -- 7.2.1 Mechanical Relation Between Suction Pad and Spherical Surface [1] -- 7.2.2 Experiment on Influence Factors of Suction Force -- 7.2.3 The Effect of Fruit Surface Contour on Pull-off Force -- 7.3 Mechanical Model of Vacuum Sucked Pulling -- 7.3.1 Kinematic and Force Balance Analyses of Pulling of On-plant Fruit with Suction Pad -- 7.3.2 Static Analysis of Pulling of On-plant Fruit with Suction Pad -- 7.3.3 Discussion -- 7.4 Probability Model of Sucked Pulling of On-plant Tomato Fruit [1]. 327 $a7.4.1 Rate of Interference and Success of Fruit Gripping -- 7.4.2 The Proportion of Fruit Number Per Cluster for Different Harvesting Rounds -- 7.4.3 The Required Sucked Pulling Distance and Its Probability for Different Fruit Number in Each Cluster -- 7.4.4 Theoretical Influence of Required Sucked Pulling Distance on the Rate of Gripping Interference -- 7.4.5 Determination of Sucked Pulling Distance -- References -- 8 Fruit Detaching Methods for Robotic Damage-Free Tomato Harvesting -- 8.1 Summary -- 8.1.1 Research Significance -- 8.1.2 Content and Innovation -- 8.2 Theoretical and Experimental Comparison of Non-tool Fruit Detaching Methods [1, 2] -- 8.2.1 Non-tool Fruit Detaching Methods -- 8.2.2 Experiments of Non-tool Detaching of Tomato Fruit -- 8.2.3 Theory of Strength and Detachment of Abscission Layers -- 8.2.4 Discussion -- 8.3 Experimental Exploration of Laser Cutting of Stems [36, 37] -- 8.3.1 Put Forward Laser Cutting of Stems -- 8.3.2 The Principle and Advantages of Laser Cutting of Biomaterials [36, 43] -- 8.3.3 Particularity and Feasibility of Laser Cutting of Stem [36, 43] -- 8.3.4 Experiments on Laser Drilling and Cutting of Tomato Stems -- 8.3.5 Results and Discussion -- 8.3.6 Realization of Laser Cutting of Peduncles [43] -- 8.4 Discussion -- References -- 9 Control Optimization and Test Study -- 9.1 Summary -- 9.1.1 Research Significance -- 9.1.2 Content and Innovation -- 9.2 Parameter Optimization of Speedy Flexible Gripping [1] -- 9.2.1 PID Parameter Adjustment of the Motion Control System -- 9.2.2 Energy Consumption Analysis of Acceleration and Deceleration Stage -- 9.2.3 Speed Optimization of Speedy Flexible Gripping -- 9.3 Control Optimization of Vacuum Sucked Pulling [7] -- 9.3.1 The Relationship Between Maximum Pulling Speed and Displacement in Acceleration Stage. 327 $a9.3.2 The Relationship Between the Dynamic Pulling Force and the Threshold of Vacuum Degree. 410 0$aSpringer Tracts in Mechanical Engineering 606 $aHarvesting machinery 606 $aTomatoes$xHarvesting$xMachinery 615 0$aHarvesting machinery. 615 0$aTomatoes$xHarvesting$xMachinery. 676 $a681.7631 700 $aLiu$b Jizhan$01073305 702 $aLi$b Pingping 702 $aLi$b Zhiguo$f1977- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910488725403321 996 $aRapid Damage-Free Robotic Harvesting of Tomatoes$92569457 997 $aUNINA LEADER 02406nam 22004453a 450 001 9910346784803321 005 20250605192221.0 024 7 $a10.17875/gup2018-1117 035 $a(CKB)4920000000095718 035 $a(OAPEN)1002651 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/36311 035 $a(ScCtBLL)90bcf8d1-ff01-4a02-954e-fbcd0259d2b1 035 $a(OCoLC)1082958776 035 $a(oapen)doab36311 035 $a(EXLCZ)994920000000095718 100 $a20250204i20182020 uu 101 0 $ager 135 $auuuuu---auuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 04$aDas Instrument der Direktzahlungen in der Agrarpolitik der USA und der EU - Eine Konvergenzanalyse$fJustyna Jaroszewska 210 $cUniversita?tsverlag Go?ttingen$d2018 210 1$a[s.l.] :$cUniversitätsverlag Göttingen,$d2018. 215 $a1 online resource (1 p.) 311 08$a9783863953911 311 08$a3863953916 330 $aLange Zeit stellten die entkoppelten Direktzahlungen ein wichtiges Instrument zur Förderung der Landwirtschaft sowohl in den USA als auch in der EU dar. Ihre Abschaffung in den USA durch die Agrarreform von 2014 markierte den Bruch des bisherigen Trends zur Angleichung der Agrarpolitiken beider Akteure. Die vorliegende Arbeit erklärt mithilfe der Konvergenztheorie die Ursachen für die neu auftretenden Divergenzen. Es werden die Gründe für den Reformdruck in Bezug auf die Direktzahlungen identifiziert sowie die Gemeinsamkeiten und Unterschiede zwischen den USA und der EU herausgearbeitet und bewertet. Schließlich werden die Konvergenzmuster untersucht und der Konvergenzprozess erklärt. Der Analyse liegt ein umfassender Vergleich der jeweiligen Entwicklung der Direktzahlungen zugrunde, einschließlich ihrer Behandlung in der wissenschaftlichen Literatur auf beiden Seiten des Atlantiks. 606 $aTechnology, engineering, agriculture$2bicssc 610 $aagriculture 610 $aagricultural reform 610 $aagricultural policy 615 7$aTechnology, engineering, agriculture 700 $aJaroszewska$b Justyna$0954664 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910346784803321 996 $aDas Instrument der Direktzahlungen in der Agrarpolitik der USA und der EU - Eine Konvergenzanalyse$92159353 997 $aUNINA