LEADER 03703nam 22006015 450 001 9910488722503321 005 20250516181743.0 010 $a3-030-80568-9 024 7 $a10.1007/978-3-030-80568-5 035 $a(CKB)5590000000516524 035 $a(MiAaPQ)EBC6675951 035 $a(Au-PeEL)EBL6675951 035 $a(OCoLC)1258668803 035 $a(DE-He213)978-3-030-80568-5 035 $a(PPN)258088109 035 $a(EXLCZ)995590000000516524 100 $a20210623d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aProceedings of the 22nd Engineering Applications of Neural Networks Conference $eEANN 2021 /$fedited by Lazaros Iliadis, John Macintyre, Chrisina Jayne, Elias Pimenidis 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (545 pages) $cillustrations (chiefly color) 225 1 $aProceedings of the International Neural Networks Society,$x2661-815X ;$v3 311 0 $a3-030-80567-0 327 $aAutomatic Facial Expression Neutralisation Using Generative Adversarial Network -- Creating Ensembles of Generative Adversarial Network Discriminators for One-class Classification -- A Hybrid Deep Learning Ensemble for Cyber Intrusion Detection -- Anomaly Detection by Robust Feature Reconstruction -- Deep Learning of Brain Asymmetry Images and Transfer Learning for Early Diagnosis of Dementia -- Deep learning topology-preserving EEG-based images for autism detection in infants -- Improving the Diagnosis of Breast Cancer by Combining Visual and Semantic Feature Descriptors -- Liver cancer trait detection and classification through Machine Learning on smart mobile devices. 330 $aThis book contains the proceedings of the 22nd EANN ?Engineering Applications of Neural Networks? 2021 that comprise of research papers on both theoretical foundations and cutting-edge applications of artificial intelligence. Based on the discussed research areas, emphasis is given in advances of machine learning (ML) focusing on the following algorithms-approaches: Augmented ML, autoencoders, adversarial neural networks, blockchain-adaptive methods, convolutional neural networks, deep learning, ensemble methods, learning-federated learning, neural networks, recurrent ? long short-term memory. The application domains are related to: Anomaly detection, bio-medical AI, cyber-security, data fusion, e-learning, emotion recognition, environment, hyperspectral imaging, fraud detection, image analysis, inverse kinematics, machine vision, natural language, recommendation systems, robotics, sentiment analysis, simulation, stock market prediction. 410 0$aProceedings of the International Neural Networks Society,$x2661-815X ;$v3 606 $aComputational intelligence 606 $aEngineering$xData processing 606 $aArtificial intelligence 606 $aComputational Intelligence 606 $aData Engineering 606 $aArtificial Intelligence 615 0$aComputational intelligence. 615 0$aEngineering$xData processing. 615 0$aArtificial intelligence. 615 14$aComputational Intelligence. 615 24$aData Engineering. 615 24$aArtificial Intelligence. 676 $a006.32 702 $aIliadis$b Lazaros S. 712 12$aEANN (Conference) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910488722503321 996 $aProceedings of the 22nd engineering applications of neural networks conference$92815816 997 $aUNINA