LEADER 11062nam 2200541 450 001 9910488702603321 005 20231110215853.0 010 $a981-16-1468-7 035 $a(CKB)5590000000519720 035 $a(MiAaPQ)EBC6675919 035 $a(Au-PeEL)EBL6675919 035 $a(OCoLC)1259624133 035 $a(PPN)258063033 035 $a(EXLCZ)995590000000519720 100 $a20220327d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aLatest developments in geotechnical earthquake engineering and soil dynamics /$fT. G. Sitharam, Ravi Jakka, Sreevalsa Kolathayar, editors 210 1$aSingapore :$cSpringer,$d[2021] 210 4$dİ2021 215 $a1 online resource (551 pages) 225 1 $aSpringer Transactions in Civil and Environmental Engineering 311 $a981-16-1467-9 327 $aIntro -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- 1 Single-Frequency Method for Computing Seismic Earth Pressures -- 1.1 Introduction -- 1.1.1 Mononobe-Okabe Method -- 1.1.2 Elastodynamic Continuum Solutions -- 1.1.3 Elastodynamic Winkler Solution -- 1.2 Equivalent Single-Frequency Solution Parameters -- 1.2.1 Transfer Functions for Frequency-Domain Solution -- 1.2.2 Earthquake Ground Motion Selection -- 1.2.3 Selection of Single-Frequency Parameters -- 1.3 Conclusions -- References -- 2 Three-Dimensional Centrifuge and Numerical Modeling of Underground Structures Subjected to Normal Faulting -- 2.1 Introduction -- 2.2 Problem Definition -- 2.3 Three-Dimensional Centrifuge and Numerical Modeling of Pile-Faulting and Tunnel-Faulting Interaction -- 2.3.1 Experimental Program and Setup -- 2.3.2 Model Pile and Model Tunnel -- 2.3.3 Model Preparation -- 2.3.4 Instrumentation and Centrifuge Model Test Procedure -- 2.3.5 Numerical Back-Analysis of Centrifuge Tests -- 2.3.6 Parametric Study of Pile-Fault-Distance and Tunnel Depth -- 2.4 Interpretation of Three-Dimensional Centrifuge Tests and Numerical Simulations -- 2.4.1 Ground Surface Settlements Adjacent to the Single Pile and Pile Group -- 2.4.2 Normal Fault Propagation in Sand and Fault-Pile Interaction -- 2.4.3 Pile Top Displacement and Tilting -- 2.4.4 Influence of Pile Location on Pile Responses: Numerical Parametric Study -- 2.4.5 Ground Surface Settlement Along the Longitudinal and Transverse Tunnel Directions -- 2.4.6 Propagation of Normal Fault and Fault-Tunnel Interaction -- 2.5 Summary and Conclusion -- Acknowledgements -- References -- 3 Liquefaction Mitigation Measures: A Historical Review -- 3.1 Introduction -- 3.2 Overview of Liquefaction-Induced Damage -- 3.3 Causative Mechanism of Liquefaction and Principles of Its Mitigation. 327 $a3.4 Mitigation Measures for Newly Constructed Structures -- 3.4.1 Prevention of Liquefaction for New Structures -- 3.4.2 Allowing for Limited Extent of Liquefaction for New Structures -- 3.5 Mitigation Measures Under Existing Structures -- 3.5.1 Prevention of Liquefaction Under Existing Structures -- 3.5.2 Allowing for Limited Extent of Liquefaction Under Existing Structures -- 3.6 Mitigation Measures Under Existing Houses -- 3.6.1 Ground Water Lowering in Residential Land -- 3.6.2 Underground Grid Wall -- 3.7 Emerging Topics -- 3.8 Conclusion -- References -- 4 Liquefaction-Induced Pile Downdrag from Full-Scale Testing -- 4.1 Introduction -- 4.2 Driven Pile Downdrag Testing in Vancouver, Canada -- 4.3 Augercast Pile Downdrag Testing in Christchurch, New Zealand -- 4.4 Micropile Downdrag Testing in Mirabello, Italy -- 4.5 Driven and Bored Pile Downdrag Testing in Turrell, Arkansas, USA -- 4.6 Procedure for Determining the Neutral Plane for Piles in Liquefied Sand -- 4.7 Conclusions -- Acknowledgements -- References -- 5 Cyclic Resistance and Large Deformation Characteristics of Sands Under Sloping Ground Conditions: Insights from Large-Strain Torsional Simple Shear Tests -- 5.1 Introduction -- 5.1.1 Effects of Static Shear on Liquefaction Resistance of Sand -- 5.1.2 Large Deformation Properties of Liquefied Sand Within Sloping Ground -- 5.2 Large-Strain Hollow Cylindrical Torsional Shear Apparatus -- 5.2.1 Stress and Strains Definition -- 5.2.2 Experimental Evaluation of Membrane Resistance and Its Correction -- 5.3 Testing Material and Procedure -- 5.3.1 Stress Reversal and no-Stress Reversal Loading Conditions -- 5.4 Tests Results -- 5.4.1 Undrained Shear Strength -- 5.4.2 Failure Mechanisms and Development of Large Deformation -- 5.4.3 Cyclic Strength Against Large Deformation Accumulation -- 5.4.4 Strain Localization in Liquefied Sand Specimens. 327 $a5.5 Summary and Conclusions -- Acknowledgements -- References -- 6 High-Speed Trains with Different Tracks on Layered Ground and Measures to Increase Critical Speed -- 6.1 Introduction -- 6.1.1 Early Studies on Moving Loads -- 6.1.2 Studies on High-Speed Trains -- 6.2 Simulation Models -- 6.2.1 Track Cases -- 6.2.2 Computational Tools -- 6.2.3 Green's Functions for Layered Viscoelastic Soil -- 6.2.4 Green's Functions for Piles in Layered Soil -- 6.3 Soil and Load Data and Simulation for Base Case -- 6.4 Measures to Increase Critical Speed -- 6.4.1 Track Stiffening -- 6.4.2 Ground Improvement and Soil Replacement -- 6.4.3 Piled Track -- 6.5 Conclusion -- References -- 7 Numerical Simulation of Coir Geotextile Reinforced Soil Under Cyclic Loading -- 7.1 Introduction -- 7.2 Numerical Model for Coir Geotextile Reinforced Soil Under Cyclic Loading -- 7.3 Results and Discussion -- 7.3.1 Calibration of FE Model -- 7.3.2 Behavior of Coir Geotextile Reinforced Soil During Cyclic Loading -- 7.3.3 Effect of Cyclic Stress on the Settlement of Coir Geotextile Reinforced Soil -- 7.3.4 Spatial Distribution of Stresses on Soil and Reinforcement During Cyclic Loading -- 7.4 Conclusions -- Acknowledgements -- References -- 8 Assessing the Effect of Aging on Soil Liquefaction Resistance -- 8.1 Introduction -- 8.2 Holocene Liquefaction in Pleistocene Deposits -- 8.3 Correcting CRR for Diagenesis -- 8.3.1 Time-KDR Relationships -- 8.3.2 MEVR-KDR Relationships -- 8.4 Conclusions -- References -- 9 Uncertainties in Small-Strain Damping Ratio Evaluation and Their Influence on Seismic Ground Response Analyses -- 9.1 Introduction -- 9.2 Sources of Uncertainties in GRAs -- 9.3 Laboratory Tests -- 9.3.1 RC Test -- 9.3.2 CTS and C(DS)DSS Tests -- 9.3.3 Frequency-Dependent Soil Behavior -- 9.4 In Situ Tests -- 9.4.1 Geophysical Tests -- 9.4.2 Back-Analysis of Downhole Arrays. 327 $a9.5 Literature Approaches to Account for Wave Scattering Effects -- 9.6 Influence of D0 Correction in GRAs -- 9.6.1 Stochastic Database of GRAs -- 9.6.2 The Roccafluvione Case Study -- 9.7 Final Remarks -- Acknowledgements -- References -- 10 Large Deformation Analysis of Coseismic Landslide Using Material Point Method -- 10.1 Introduction -- 10.2 Material Point Method -- 10.3 Numerical Simulation of Dynamic Slope Failure -- 10.3.1 Model Setup -- 10.3.2 Dynamic Slope Failure Process -- 10.3.3 Effects of Residual Soil Strength -- 10.4 Conclusions and Discussions -- Acknowledgements -- References -- 11 The State of Art on Equivalent State Theory for Silty Sands -- 11.1 Introduction -- 11.2 Equivalent State Theory (EST) -- 11.2.1 Equivalent Granular Void Ratio, e* -- 11.2.2 Discrete Element Method (DEM) Evidence for Active/Inactive Fine Particles and Their Contribution -- 11.2.3 Estimation of b -- 11.2.4 Philosophy of the Equivalent State Theory and a Few Experimental Databases for Evaluation -- 11.2.5 Small Strain Stiffness Within the Equivalent State Theory -- 11.2.6 Equivalent Granular Critical State Line for the Equivalent State Theory -- 11.2.7 The Equivalent Granular State Parameter for the Equivalent State Theory -- 11.2.8 Static Liquefaction/Instability Within the Equivalent State Theory -- 11.2.9 Cyclic Liquefaction Within the Equivalent State Theory -- 11.3 Constitutive Models Within the Equivalent State Theory -- 11.4 Conclusions -- Acknowledgements -- References -- 12 Forensic Evaluation of Long-Distance Flow in Gently Sloped Ground During the 2018 Sulawesi Earthquake, Indonesia -- 12.1 Introduction -- 12.2 Geological and Seismological Characteristics of Central Sulawesi Region -- 12.3 Earthquake-Induced Flow-Slides and the Resulting Damage -- 12.3.1 Flow-Slides at Jono Oge -- 12.3.2 Flow-Slide at Sibalaya -- 12.3.3 Flow-Slide at Balaroa. 327 $a12.3.4 Flow-Slides at Petobo -- 12.4 Probable Flow-Slide Mechanism -- 12.5 Concluding Remarks -- Acknowledgements -- References -- 13 Empirical Predictions of Fourier Amplitude and Phase Spectra Including Local Site Effects for Simulation of Design Accelerograms in Western Himalayan Region -- 13.1 Introduction -- 13.2 Study Region and Strong Motion Database -- 13.3 Prediction Relations for Fourier Amplitude Spectra -- 13.3.1 Estimation of Regression Coefficients -- 13.3.2 Prediction Model and Statistics of Residues -- 13.3.3 Examples of Predicted Fourier Spectra -- 13.3.4 Comparisons Between Predicted and Real Fourier Spectra -- 13.4 Prediction Methodology for Fourier Phase Spectra -- 13.4.1 Prediction of Group Velocity Dispersion Curves -- 13.4.2 Simulation of Fourier Phase Spectra -- 13.5 Generation of Design Accelerograms -- 13.6 Discussion and Conclusions -- References -- 14 Regional-Local Hybrid Seismic Hazard and Disaster Modeling of the Five Tectonic Province Ensemble Consisting of Westcentral Himalaya to Northeast India -- 14.1 Introduction -- 14.2 Second-Order Seismic Hazard Assessment -- 14.2.1 Smoothened Gridded Seismicity Model -- 14.2.2 Probabilistic Seismic Hazard Analysis -- 14.3 Site Classification -- 14.3.1 Regional Site Classification -- 14.3.1.1 Geology -- 14.3.1.2 Geomorphology -- 14.3.1.3 Landform -- 14.4 Site Characterization -- 14.4.1 In-Situ Measurements -- 14.4.2 Surface Measurements -- 14.4.3 Generation of Site- and Lithology-Specific, Depth-Dependent Empirical Relations Between SPT-N and Vs -- 14.5 Site Amplification -- 14.5.1 Ground Motion Simulation -- 14.5.2 Site Response -- 14.6 Induced Hazards -- 14.6.1 Liquefaction -- 14.6.1.1 Factor of Safety Assessment -- 14.6.1.2 Cyclic Resistance Ratio (CRR) -- 14.6.1.3 Cyclic Stress Ratio (CSR) -- 14.6.1.4 Liquefaction Potential Index (LPI) -- 14.6.2 Landslides. 327 $a14.6.2.1 Slope Stability Analysis. 410 0$aSpringer Transactions in Civil and Environmental Engineering 606 $aSoil dynamics$xStatistical methods 606 $aGeotechnical engineering$xData processing 615 0$aSoil dynamics$xStatistical methods. 615 0$aGeotechnical engineering$xData processing. 676 $a624.15136 702 $aSitharam$b T. G. 702 $aJakka$b Ravi 702 $aKolathayar$b Sreevalsa 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910488702603321 996 $aLatest developments in geotechnical earthquake engineering and soil dynamics$92817325 997 $aUNINA