LEADER 02608oam 2200433 450 001 9910484129703321 005 20210513095931.0 010 $a3-030-57858-5 024 7 $a10.1007/978-3-030-57858-9 035 $a(CKB)4100000011610301 035 $a(MiAaPQ)EBC6407986 035 $a(DE-He213)978-3-030-57858-9 035 $a(PPN)252510232 035 $a(EXLCZ)994100000011610301 100 $a20210513d2021 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSeismic analysis of structures and equipment /$fPraveen K. Malhotra 205 $a1st ed. 2021. 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (XV, 272 p. 256 illus., 249 illus. in color.) 311 $a3-030-57857-7 327 $aChapter 1. Ground Motions from Past Earthquakes -- Chapter 2. Ground Motions for Future Earthquakes -- Chapter 3. Response of One-Story Buildings -- Chapter 4. Response of Multi-Story Buildings -- Chapter 5. Sliding of Objects During Earthquakes -- Chapter 6. Rocking of Objects During Earthquakes -- Chapter 7. Response of Storage Racks -- Chapter 8. Response of Liquid-Storage Tanks -- Chapter 9. Response of Gantry Cranes. 330 $aThis book describes methods used to estimate forces and deformations in structures during future earthquakes. It synthesizes the topics related to ground motions with those related to structural response and, therefore, closes the gap between geosciences and engineering. Requiring no prior knowledge, the book elucidates confusing concepts related to ground motions and structural response and enables the reader to select a suitable analysis method and implement a cost?effective seismic design. Presents lucid, accessible descriptions of key concepts in ground motions and structural response and easy to follow descriptions of methods used in seismic analysis; Explains the roles of strength, deformability, and damping in seismic design; Reinforces concepts with real?world examples; Stands as a ready reference for performance?based/risk-based seismic design, providing guidance for achieving a cost-effective seismic design. 606 $aEarthquake engineering 615 0$aEarthquake engineering. 676 $a624.1762 700 $aMalhotra$b Praveen K.$01228350 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a9910484129703321 996 $aSeismic analysis of structures and equipment$92851688 997 $aUNINA LEADER 10999nam 2200541 450 001 9910485605503321 005 20220327075334.0 010 $a3-030-25995-1 035 $a(CKB)5590000000503277 035 $a(MiAaPQ)EBC6675948 035 $a(Au-PeEL)EBL6675948 035 $a(OCoLC)1257550004 035 $a(PPN)258304251 035 $a(EXLCZ)995590000000503277 100 $a20220327d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnergy management and energy efficiency in industry $epractical examples /$fDurmus? Kaya, Fatma C?anka Kilic?, Hasan Hu?seyin O?ztu?rk 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (533 pages) 225 1 $aGreen Energy and Technology 311 $a3-030-25994-3 327 $aIntro -- Preface -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- 1 Energy -- 1.1 Energy -- 1.2 Types of Energy -- 1.2.1 Mechanical Energy -- 1.2.2 Heat Energy -- 1.2.3 Chemical Energy -- 1.3 Energy Resources -- 1.3.1 Fossil Energy Resources -- 1.3.2 Renewable Energy Resources -- References -- 2 Energy Management -- 2.1 Energy Manager -- 2.2 Energy Management Policy -- 2.2.1 Goals of the Energy Management Policy -- 2.2.2 Characteristics of Energy Management Policy -- 2.3 Energy Management Program -- 2.4 Energy Management Method -- 2.5 Energy Management System -- 2.5.1 ISO 50001 Energy Management System -- References -- 3 Energy Audit -- 3.1 The Aims of Energy Audit -- 3.2 Businesses that Need to Conduct Energy Audits -- 3.3 Energy Audit Levels -- 3.4 Energy Audit Profiles -- 3.5 Steps of Energy Audit -- 3.5.1 The Preliminary Audit -- 3.5.2 The Preliminary Audit Briefing -- 3.5.3 The Detailed Audit -- 3.5.4 Reporting -- 3.6 Energy Audit Measurements -- 3.7 Preparation of an Energy Audit Report -- 3.7.1 Purpose of the Energy Audit -- 3.7.2 The Energy Audit -- 3.7.3 Energy Audit Steps -- 3.7.4 The Method of the Energy Audit -- 3.7.5 Preparation of the Energy Audit -- 3.7.6 The Energy Audit Team -- 3.7.7 Energy Audit Instruments -- 3.7.8 The Energy Audit Report -- 3.8 Energy Audit Examples -- 3.8.1 Steam System -- 3.8.2 The Mass Balance Calculation -- 3.8.3 Steam Quality -- 3.8.4 Calculation of the Blowdown Amount in Boilers -- 3.8.5 Feeding Water and Properties -- 3.8.6 Calculation of the Steam Cost -- References -- 4 Energy Efficiency -- 4.1 The Measures for Energy Efficiency -- 4.2 Definitions for Energy Efficiency -- 4.3 Energy Intensity -- 4.3.1 Primary and Final Energy Intensity -- 4.3.2 Average Yearly Rate of Improvement in Primary Energy Intensity (As in %) -- 4.3.3 Industry Energy Intensity. 327 $a4.3.4 Services Energy Intensity -- 4.3.5 Agriculture Energy Intensity -- 4.3.6 Passenger Transport Energy Intensity -- 4.3.7 Freight Transport Energy Intensity -- 4.3.8 Residential Energy Intensity -- 4.3.9 Energy Intensity of the Countries -- 4.4 Energy Use and Energy Efficiency in the World Countries -- 4.4.1 Overall Assessment -- 4.4.2 Energy Efficiency -- References -- 5 Energy Performance Certificate -- 5.1 Energy Performance Assessment -- 5.2 Content of the Energy Identity Certificate -- 5.3 Preparation of the Energy Identity Certificate -- 5.4 Use of the Energy Identity Certificate -- 5.5 Energy Label -- References -- 6 Energy Efficiency Services Sector -- 6.1 Energy Service Companies (ESCOs) -- 6.1.1 Energy Efficiency Services -- 6.1.2 Energy Efficiency Service Models -- 6.2 The Required Qualifications for the Measurements in ESCOs -- References -- 7 Measurement Techniques and Instruments -- 7.1 Measurement Techniques -- 7.2 The Quantities to Be Measured -- 7.3 Measurement Methods -- 7.3.1 Direct Measurement -- 7.3.2 Indirect Measurement -- 7.3.3 Absolute Measurement -- 7.3.4 Comparative Measurement -- 7.4 The Properties of the Measurement Systems -- 7.4.1 Error -- 7.4.2 Accuracy -- 7.4.3 Precision -- 7.4.4 Repeatability -- 7.4.5 Measurement Uncertainty -- 7.4.6 Calibration -- 7.5 Measurement Instruments -- 7.5.1 Electrical Measuring Instruments -- 7.5.2 Force Measurement -- 7.5.3 Pressure Measurement -- 7.5.4 Flow Rate Measurement -- 7.5.5 Velocity Measurement -- 7.5.6 Temperature Measurement -- 7.5.7 Radiation Measurement -- 7.5.8 Analysis of Flue Gases -- References -- 8 Fuels and Combustion -- 8.1 Types of Fuel -- 8.1.1 Fossil Fuels -- 8.1.2 Biofuels -- 8.1.3 Heating (Calorific) Value of Fuels -- 8.2 Combustion -- 8.2.1 Combustion Reaction -- 8.2.2 Types of Combustion -- 8.2.3 Incomplete Combustion Losses. 327 $a8.2.4 Calculation of Combustion -- 8.2.5 Flame -- References -- 9 Energy Efficiency in Boilers -- 9.1 Boiler Selection -- 9.2 Determination of Boiler Efficiency -- 9.3 Factors Affecting Boiler Efficiency -- 9.3.1 Incomplete Combustion -- 9.3.2 Air/Fuel Ratio -- 9.3.3 Heat Losses from the Flue Gasses -- 9.3.4 Flue Gas Temperature -- 9.3.5 Heat Losses from the Stack -- 9.3.6 Fuel Type -- 9.3.7 Burner Type -- 9.3.8 Boiler Load -- 9.3.9 Heat Losses from Boiler Surface -- 9.3.10 Heater Surface Cleaning -- 9.4 Flue Gas Analysis -- 9.4.1 Oxygen -- 9.4.2 Carbon Dioxide -- 9.4.3 Carbon Monoxide -- 9.4.4 Sulfur Dioxide -- 9.4.5 Nitrogen Oxides -- 9.4.6 Temperature of the Flue Gas -- 9.4.7 Combustion Efficiency -- 9.5 Case Study on Energy Efficiency in Boilers -- 9.5.1 Steam Boiler Number 1 -- 9.5.2 Steam Boiler Number 2 -- 9.5.3 Heat Energy Saving -- 9.6 An Example of Energy Efficiency in Boiler Fans -- 9.6.1 Fan Fluid Power Calculation -- 9.6.2 Investments and Payback Periods -- 9.6.3 Energy Saving in Fans -- 9.7 Better Operation of Boilers -- 9.7.1 Heat Recovery from Flue Gases -- 9.7.2 Improvement of Liquid Fueled Boiler Efficiency -- 9.7.3 Improvement of Gas-Fired Boiler Efficiencies -- 9.7.4 Improvement of Coal-Fired Boiler Efficiencies -- 9.7.5 Better Operation of Boilers -- References -- 10 Energy Efficiency in Furnaces -- 10.1 Thermal Efficiency in Furnaces and the Factors that Affecting Efficiency -- 10.1.1 Thermal Efficiency in Furnaces -- 10.1.2 Factors Affecting the Efficiency in Furnaces -- 10.2 Combustion in Furnaces -- 10.2.1 Theoretical Principles -- 10.2.2 Energy Equivalence -- 10.3 Energy Saving in Metal Melting Process -- 10.4 Case Study for Energy Survey in Furnaces -- 10.4.1 Measurement Methods and Measuring Instruments -- 10.4.2 Evaluation of Measurement and Calculation Results -- 10.4.3 Potential Saving Areas -- References. 327 $a11 Energy Efficiency in Pumps -- 11.1 Types of Pump -- 11.1.1 Centrifugal Pump -- 11.1.2 Axial Pump -- 11.2 Energy Efficiency in Pump Usage -- 11.2.1 Efficiency in Pump Design -- 11.2.2 Efficiency in Pump Use -- 11.3 Case Study on Energy Efficiency of Pumps -- 11.3.1 Introduction to Measured Pumps and Systems -- 11.3.2 Measurement Methods and Measurement Results -- 11.3.3 Mechanical Measurements -- 11.3.4 Loading and Efficiency of Electric Motors -- 11.3.5 Potential Savings and Suggestions -- References -- 12 Energy Efficiency in Electric Motors -- 12.1 Asynchronous Motors -- 12.2 Energy Saving in Electric Motors -- 12.3 Motor Load Characteristics -- 12.3.1 Variable Torque-Speed Characteristics Load -- 12.3.2 Constant Torque-Speed Characteristics Load -- 12.4 Driver Selection for Asynchronous Motor -- 12.5 High-Efficient Motor Use -- 12.5.1 An Example of High-Efficiency Motor Application -- 12.6 Using Frequency Converters in Asynchronous Motors -- 12.6.1 Frequency Converter -- 12.7 Replacement of Low Load Motors -- 12.8 Correction of Power Factor in Electric Motors -- 12.8.1 Reduction of Idle Running Time in Electric Motors -- References -- 13 Energy Efficiency in Compressed Air Systems -- 13.1 Basic Equipment of Compressed Air Systems -- 13.1.1 Compressors -- 13.1.2 Types of Compressors -- 13.1.3 Compressor Control Systems -- 13.2 Low-Pressure Use -- 13.3 Prevention of Air Leaks -- 13.3.1 Detection of Air Leaks -- 13.3.2 Energy Losses Due to Air Leaks -- 13.4 Reduction of Compressor Outlet Pressure -- 13.5 Taking Compressor Suction Air from Outside -- 13.6 Use of Compressor Cooling Air -- 13.7 Compressed Air Flow Control and Energy Economy -- 13.8 Closing of Compressors and Main Valves -- 13.9 Recommendations for the Operation of Compressors -- References -- 14 Energy Efficiency in Fans -- 14.1 Fan Laws. 327 $a14.2 Flow Control Systems and Energy Economics -- 14.2.1 Damper-Controlled Systems -- 14.2.2 Speed-Controlled Systems -- 14.3 Fan Selection -- References -- 15 Energy Saving with Variable Speed Driver Applications -- 15.1 Variable Speed Drive Systems -- 15.1.1 Variable Frequency Drive -- 15.2 Application in Air-Conditioning Rooms -- 15.2.1 Payback Period -- 15.2.2 Motor Driver Use in Twisting Room -- References -- 16 Energy Saving with Heat Insulation -- 16.1 The Aim of Heat (Thermal) Insulation -- 16.2 Benefits of Thermal Insulation -- 16.3 Heat (Thermal) Insulating Materials -- 16.3.1 Glass Wool -- 16.3.2 Rock Wool -- 16.3.3 Expanded Polystyrene Sheet -- 16.3.4 Extruded Polystyrene Sheet -- 16.3.5 Glass Foam -- 16.3.6 Calcium Silicate -- 16.3.7 Melamine Foam -- 16.3.8 PVC Foam -- 16.3.9 Polyethylene Foam -- 16.3.10 Elastomeric Rubber Foam -- 16.3.11 Polyurethane Foam -- 16.3.12 Ceramic Wool -- 16.3.13 Vermiculite -- 16.3.14 Elastomeric Rubber -- 16.3.15 Plastic Pipe and Sheet Insulation Materials -- 16.3.16 Fiber Insulation Materials -- 16.4 Energy Saving by Insulating Hot Surfaces -- References -- 17 Waste Heat Recovery -- 17.1 Heat Exchangers -- 17.1.1 Tubular Heat Exchanger -- 17.1.2 Plate Heat Exchanger -- 17.1.3 Heat Pipe Heat Exchanger -- 17.2 Energy Saving in Air-Conditioning Systems -- 17.3 Heating of Combustion Air -- 17.4 Heat Recovery from Contaminated Fluid -- 17.5 Waste Heat Recovery Application -- 17.5.1 Waste Heat Saving Potential -- References -- 18 Energy Efficiency in Water Heating-Distribution-Pressurizing Systems -- 18.1 Energy Efficiency in Water Heating Systems -- 18.1.1 Potable Water Temperature -- 18.1.2 Energy-Saving Measures -- 18.1.3 Selection of the Boiler -- 18.2 Water Distribution Systems -- 18.3 Water Pressurization Systems -- References -- 19 Energy Efficiency in Illumination (Lighting). 327 $a19.1 Energy Saving in Lighting. 410 0$aGreen energy and technology. 606 $aIndustries$xEnergy conservation 606 $aEnergy consumption 615 0$aIndustries$xEnergy conservation. 615 0$aEnergy consumption. 676 $a658.26 700 $aKaya$b Durmus?$0859905 702 $aKilic?$b Fatma C?anka 702 $aO?ztu?rk$b Hasan Hu?seyin 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910485605503321 996 $aEnergy Management and Energy Efficiency in Industry$91918823 997 $aUNINA LEADER 01020nam a22002651i 4500 001 991002967569707536 005 20040430154905.0 008 040624s1976 ne a||||||||||||||||eng 020 $a9004044949 035 $ab13004748-39ule_inst 035 $aARCHE-096242$9ExL 040 $aDip.to Beni Culturali$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a338.09 100 1 $aMoeller, Walter O.$0183443 245 14$aThe wool trade of ancient Pompeii /$cby Walter O. Moeller 260 $aLeiden :$bBrill,$c1976 300 $a119 p. :$bill. ;$c25 cm 440 0$aStudies of the Dutch archaeological and historical society ;$v3 650 4$aLana$xCommercio$xPompei$xAntichità 907 $a.b13004748$b02-04-14$c12-07-04 912 $a991002967569707536 945 $aLE001 AN XX 92$g1$i2001000066674$lle001$nC. 1$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13614563$z12-07-04 996 $aWool trade of ancient Pompeii$9282464 997 $aUNISALENTO 998 $ale001$b12-07-04$cm$da $e-$feng$gne $h4$i1