LEADER 03539nam 22005895 450 001 9910485037103321 005 20210419112904.0 010 $a3-030-35118-1 024 7 $a10.1007/978-3-030-35118-2 035 $a(CKB)4920000000496058 035 $a(DE-He213)978-3-030-35118-2 035 $a(MiAaPQ)EBC6157923 035 $a(PPN)243758405 035 $a(EXLCZ)994920000000496058 100 $a20210419h2020 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBasic Representation Theory of Algebras /$fby Ibrahim Assem, Flávio U. Coelho 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (X, 311 p. 288 illus.) 225 1 $aGraduate Texts in Mathematics,$x0072-5285 ;$v283 311 $a3-030-35117-3 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Chapter 1: Modules, algebras and quivers -- Chapter 2: The radical and almost split sequences -- Chapter 3: Constructing almost split sequences -- Chapter 4: The Auslander?Reiten quiver of an algebra -- Chapter 5: Endomorphism algebras -- Chapter 6: Representation-finite algebras -- Bibliography -- Index. 330 $aThis textbook introduces the representation theory of algebras by focusing on two of its most important aspects: the Auslander-Reiten theory and the study of the radical of a module category. It starts by introducing and describing several characterisations of the radical of a module category, then presents the central concepts of irreducible morphisms and almost split sequences, before providing the definition of the Auslander-Reiten quiver, which encodes much of the information on the module category. It then turns to the study of endomorphism algebras, leading on one hand to the definition of the Auslander algebra and on the other to tilting theory. The book ends with selected properties of representation-finite algebras, which are now the best understood class of algebras. Intended for graduate students in representation theory, this book is also of interest to any mathematician wanting to learn the fundamentals of this rapidly growing field. A graduate course in non-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book. 410 0$aGraduate Texts in Mathematics,$x0072-5285 ;$v283 606 $aAssociative rings 606 $aRings (Algebra) 606 $aCategories (Mathematics) 606 $aAlgebra, Homological 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 615 0$aAssociative rings. 615 0$aRings (Algebra) 615 0$aCategories (Mathematics) 615 0$aAlgebra, Homological. 615 14$aAssociative Rings and Algebras. 615 24$aCategory Theory, Homological Algebra. 676 $a512.9 700 $aAssem$b Ibrahim$4aut$4http://id.loc.gov/vocabulary/relators/aut$01020549 702 $aCoelho$b Flávio U$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910485037103321 996 $aBasic Representation Theory of Algebras$92413546 997 $aUNINA