LEADER 03184nam 22006375 450 001 9910484994803321 005 20251113180743.0 010 $a3-030-60064-5 024 7 $a10.1007/978-3-030-60064-8 035 $a(CKB)4100000011558770 035 $a(DE-He213)978-3-030-60064-8 035 $a(MiAaPQ)EBC6386042 035 $a(PPN)252508351 035 $a(EXLCZ)994100000011558770 100 $a20201105d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRandom Fields of Piezoelectricity and Piezomagnetism $eCorrelation Structures /$fby Anatoliy Malyarenko, Martin Ostoja-Starzewski, Amirhossein Amiri-Hezaveh 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XI, 97 p. 2 illus., 1 illus. in color.) 225 1 $aSpringerBriefs in Mathematical Methods,$x2365-0834 311 08$a3-030-60063-7 327 $aPreface -- 1. Continuum Theory of Piezoelectricity and Piezomagnetism -- 2. Mathematical preliminaries -- 3. The Choice of a Basis in the Space VG -- 4. Correlation Structures -- References -- Index. 330 $aRandom fields are a necessity when formulating stochastic continuum theories. In this book, a theory of random piezoelectric and piezomagnetic materials is developed. First, elements of the continuum mechanics of electromagnetic solids are presented. Then the relevant linear governing equations are introduced, written in terms of either a displacement approach or a stress approach, along with linear variational principles. On this basis, a statistical description of second-order (statistically) homogeneous and isotropic rank-3 tensor-valued random fields is given. With a group-theoretic foundation, correlation functions and their spectral counterparts are obtained in terms of stochastic integrals with respect to certain random measures for the fields that belong to orthotropic, tetragonal, and cubic crystal systems. The target audience will primarily comprise researchers and graduate students in theoretical mechanics, statistical physics, and probability. 410 0$aSpringerBriefs in Mathematical Methods,$x2365-0834 606 $aProbabilities 606 $aContinuum mechanics 606 $aMagnetism 606 $aCondensed matter 606 $aApplied Probability 606 $aContinuum Mechanics 606 $aMagnetism 606 $aCondensed Matter Physics 615 0$aProbabilities. 615 0$aContinuum mechanics. 615 0$aMagnetism. 615 0$aCondensed matter. 615 14$aApplied Probability. 615 24$aContinuum Mechanics. 615 24$aMagnetism. 615 24$aCondensed Matter Physics. 676 $a530.141 700 $aMalyarenko$b Anatoliy$0938186 702 $aOstoja-Starzewski$b Martin 702 $aAmiri-Hezaveh$b Amirhossein 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484994803321 996 $aRandom fields of piezoelectricity and piezomagnetism$92113490 997 $aUNINA