LEADER 00760nam0-2200265 --450 001 9910876400603321 005 20240808113026.0 100 $a20240808d1967----kmuy0itay5050 ba 101 0 $afre 102 $aFR 105 $a 001yy 200 1 $a<>Yougoslavie$fpar Jovan Djordjevic 210 $aParis$cLibrairie generale de droit et de jurisprudence$d1967 215 $a482 p.$d19 cm 225 1 $aComment ils sont gouvernés$v15 610 0 $aIugoslavia$aOrdinamento istituzionale 676 $a320.9497$v20 700 1$aDjordjevic,$bJovan$0698782 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910876400603321 952 $aF CN 2(12)$b3021$fDDCIC 959 $aDDCIC 996 $aYougoslavie$91372347 997 $aUNINA LEADER 03966nam 22006135 450 001 9910484980603321 005 20251113181626.0 010 $a3-030-62672-5 024 7 $a10.1007/978-3-030-62672-3 035 $a(CKB)5340000000066942 035 $a(DE-He213)978-3-030-62672-3 035 $a(MiAaPQ)EBC6425601 035 $a(PPN)252515374 035 $a(EXLCZ)995340000000066942 100 $a20201214d2021 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFractal Functions, Dimensions and Signal Analysis /$fby Santo Banerjee, D. Easwaramoorthy, A. Gowrisankar 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (X, 132 p. 61 illus., 59 illus. in color.) 225 1 $aUnderstanding Complex Systems,$x1860-0840 311 08$a3-030-62671-7 327 $aChapter 1. Mathematical background of deterministic fractals -- Chapter 2. Fractal functions.-Chapter 3. Fractional calculus and generalized fractal functions -- Chapter 4. Signal Analysis -- Chapter 5. Multifractal and wavelet based signal analysis. 330 $aThis book introduces the fractal interpolation functions (FIFs) in approximation theory to the readers and the concerned researchers in advanced level. FIFs can be used to precisely reconstruct the naturally occurring functions when compared with the classical interpolants. The book focuses on the construction of fractals in metric space through various iterated function systems. It begins by providing the Mathematical background behind the fractal interpolation functions with its graphical representations and then introduces the fractional integral and fractional derivative on fractal functions in various scenarios. Further, the existence of the fractal interpolation function with the countable iterated function system is demonstrated by taking suitable monotone and bounded sequences. It also covers the dimension of fractal functions and investigates the relationship between the fractal dimension and the fractional order of fractal interpolation functions. Moreover, this book explores the idea of fractal interpolation in the reconstruction scheme of illustrative waveforms and discusses the problems of identification of the characterizing parameters. In the application section, this research compendium addresses the signal processing and its Mathematical methodologies. A wavelet-based denoising method for the recovery of electroencephalogram (EEG) signals contaminated by nonstationary noises is presented, and the author investigates the recognition of healthy, epileptic EEG and cardiac ECG signals using multifractal measures. This book is intended for professionals in the field of Mathematics, Physics and Computer Science, helping them broaden their understanding of fractal functions and dimensions, while also providing the illustrative experimental applications for researchers in biomedicine and neuroscience. 410 0$aUnderstanding Complex Systems,$x1860-0840 606 $aNonlinear Optics 606 $aDynamics 606 $aNonlinear theories 606 $aSystem theory 606 $aNonlinear Optics 606 $aApplied Dynamical Systems 606 $aComplex Systems 615 0$aNonlinear Optics. 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aSystem theory. 615 14$aNonlinear Optics. 615 24$aApplied Dynamical Systems. 615 24$aComplex Systems. 676 $a511.42 700 $aBanerjee$b Santo$f1976-$0730099 702 $aEaswaramoorthy$b D. 702 $aGowrisankar$b A$g(Arulprakash), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484980603321 996 $aFractal functions, dimensions and signal analysis$92831667 997 $aUNINA