LEADER 03381oam 2200529 450 001 9910484917903321 005 20210604094810.0 010 $a3-030-60443-8 024 7 $a10.1007/978-3-030-60443-1 035 $a(CKB)4100000011665404 035 $a(DE-He213)978-3-030-60443-1 035 $a(MiAaPQ)EBC6426719 035 $a(PPN)252514998 035 $a(EXLCZ)994100000011665404 100 $a20210604d2021 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aTheory and modeling of polymer nanocomposites /$fedited by Valeriy V. Ginzburg, Lisa M. Hall 205 $a1st ed. 2021. 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (XIX, 316 p. 150 illus., 130 illus. in color.) 225 1 $aSpringer Series in Materials Science,$x0933-033X ;$v310 300 $aIncludes index. 311 $a3-030-60442-X 327 $aIntroduction -- Part I. Structure and Morphology -- Chapter 1. Atomistic and Molecular Modeling of Polymer Nanocomposites -- Chapter 2. Coarse-grained modeling: Particle-based Approaches -- Chapter 3. Coarse-grained modeling: Field-based Approaches -- Chapter 4. Multiscale modeling examples -- Part II. Dynamics and Rheology -- Chapter 5. Diffusion in Polymer Nanocomposites -- Chapter 6. Linear Rheology of Polymer Nanocomposites -- Chapter 7. Nonlinear Rheology and Mechanics of Polymer Nanocomposites -- Part III. Physical Property Prediction -- Chapter 8. Thermal Conductivity -- Chapter 9. Electrical Conductivity -- Chapter 10. Optical Properties -- Chapter 11. Barrier Properties -- Chapter 12. Dielectric Breakdown -- Chapter 13. Flammability -- Summary -- Index. 330 $aThis edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book useful for academic and industrial practitioners alike. 410 0$aSpringer Series in Materials Science,$x0933-033X ;$v310 606 $aGlass 606 $aComposite materials 606 $aCeramics 615 0$aGlass. 615 0$aComposite materials. 615 0$aCeramics. 676 $a620.118 702 $aHall$b Lisa M. 702 $aGinzburg$b Valeriy V. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a9910484917903321 996 $aTheory and modeling of polymer nanocomposites$92847271 997 $aUNINA