LEADER 03823nam 22006255 450 001 9910484904003321 005 20251202153000.0 010 $a3-030-64232-1 024 7 $a10.1007/978-3-030-64232-7 035 $a(CKB)4100000011774027 035 $a(MiAaPQ)EBC6483664 035 $a(PPN)253861861 035 $a(BIP)79243126 035 $a(BIP)77890208 035 $a(DE-He213)978-3-030-64232-7 035 $a(EXLCZ)994100000011774027 100 $a20210218d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSpecial Functions in Physics with MATLAB /$fby Wolfgang Schweizer 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (xvii, 282 pages) $cillustrations 311 08$a3-030-64231-3 320 $aIncludes bibliographical references and index. 327 $a1. Gamma Functions, Beta Functions, and related -- 2. Error Functions and Fresnel Integrals -- 3. Legendre Polynomials and Legendre Functions -- 4. Bessel and Airy Functions -- 5. Struve Functions and Related Functions -- 6. Confluent Hypergeometric Function -- 7. Coulomb Wave Functions -- 8. Hypergeometric Functions -- 9. J Functions -- 10. Jacobi Elliptic Functions -- 11. Elliptic Integrals -- 12. Weierstraß Functions -- 13. Parabolic Cylinder Functions -- 14. Mathieu Functions -- 15. Orthogonal Polynomials - General Aspects -- 16. Hermite Polynomials -- 17. Laguerre Polynomials -- 18. Chebychev Polynomials -- 19. Bernoulli and Euler Polynomials -- 20. Riemann Zeta Function -- 21. Piecewise Interpolation Polynomials -- 22. Wigner- and Clebsch-Gordan Coefficients -- 23. Coordinate Systems. 330 $aThis handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book?s primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering. 606 $aMathematical physics 606 $aComputer simulation 606 $aSpecial functions 606 $aMathematics$xData processing 606 $aComputational Physics and Simulations 606 $aSpecial Functions 606 $aTheoretical, Mathematical and Computational Physics 606 $aComputational Mathematics and Numerical Analysis 615 0$aMathematical physics. 615 0$aComputer simulation. 615 0$aSpecial functions. 615 0$aMathematics$xData processing. 615 14$aComputational Physics and Simulations. 615 24$aSpecial Functions. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aComputational Mathematics and Numerical Analysis. 676 $a530.15 700 $aSchweizer$b Wolfgang$c(Computer scientist),$01246207 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484904003321 996 $aSpecial Functions in Physics with MATLAB$94286327 997 $aUNINA