LEADER 02657nam 2200589 a 450 001 9910484846703321 005 20200520144314.0 010 $a9783540688969 010 $a354068896X 024 7 $a10.1007/978-3-540-68896-9 035 $a(CKB)1000000000437224 035 $a(SSID)ssj0000320178 035 $a(PQKBManifestationID)11258303 035 $a(PQKBTitleCode)TC0000320178 035 $a(PQKBWorkID)10343627 035 $a(PQKB)11196821 035 $a(DE-He213)978-3-540-68896-9 035 $a(MiAaPQ)EBC3068596 035 $a(PPN)12705460X 035 $a(EXLCZ)991000000000437224 100 $a20080508d2008 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aStability of queueing networks $eEcole d'Ete de Probabilites de Saint-Flour XXXVI--2006 /$fMaury Bramson 205 $a1st ed. 2008. 210 $aBerlin $cSpringer$d2008 215 $a1 online resource (VIII, 198 p. 20 illus.) 225 1 $aLecture notes in mathematics,$x0075-8434 ;$v1950 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540688952 311 08$a3540688951 320 $aIncludes bibliographical references and index. 327 $aThe Classical Networks -- Instability of Subcritical Queueing Networks -- Stability of Queueing Networks -- Applications and Some Further Theory. 330 $aQueueing networks constitute a large family of stochastic models, involving jobs that enter a network, compete for service, and eventually leave the network upon completion of service. Since the early 1990s, substantial attention has been devoted to the question of when such networks are stable. This volume presents a summary of such work. Emphasis is placed on the use of fluid models in showing stability, and on examples of queueing networks that are unstable even when the arrival rate is less than the service rate. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Alice Guionnet and Steffen Lauritzen. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1950. 606 $aQueuing theory 606 $aProbabilities$vCongresses 615 0$aQueuing theory. 615 0$aProbabilities 676 $a519.2 700 $aBramson$b Maury$055576 712 12$aEcole d'ete de probabilites de Saint-Flour$d(36th :$f2006) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484846703321 996 $aStability of Queueing networks$9230558 997 $aUNINA