LEADER 02948nam 2200577 a 450 001 9910484743503321 005 20200520144314.0 010 $a9783642211379 010 $a3642211372 024 7 $a10.1007/978-3-642-21137-9 035 $a(CKB)2670000000100001 035 $a(SSID)ssj0000508380 035 $a(PQKBManifestationID)11308761 035 $a(PQKBTitleCode)TC0000508380 035 $a(PQKBWorkID)10555669 035 $a(PQKB)10440518 035 $a(DE-He213)978-3-642-21137-9 035 $a(MiAaPQ)EBC3067027 035 $a(PPN)156314533 035 $a(EXLCZ)992670000000100001 100 $a20110628d2011 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotic stability of steady compressible fluids /$fMariarosaria Padula 205 $a1st ed. 2011. 210 $aNew York $cSpringer$d2011 215 $a1 online resource (XIV, 235 p.) 225 1 $aLecture notes in mathematics,$x0075-8434 ;$v2024 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642211362 311 08$a3642211364 320 $aIncludes bibliographical references and index. 327 $a1 Topics in Fluid Mechanics -- 2 Topics in Stability -- 3 Barotropic Fluids with Rigid Boundary -- 4 Isothermal Fluids with Free Boundaries -- 5 Polytropic Fluids with Rigid Boundary. 330 $aThis volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A heat-conducting, viscous polytropic gas. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2024. 606 $aFluid dynamics 606 $aStability 615 0$aFluid dynamics. 615 0$aStability. 676 $a620.1/0640151 700 $aPadula$b Mariarosaria$0478955 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484743503321 996 $aAsymptotic stability of steady compressible fluids$9261818 997 $aUNINA