LEADER 09212nam 2200505 450 001 9910484741303321 005 20211016132318.0 010 $a3-030-68948-4 035 $a(CKB)4100000011807337 035 $a(MiAaPQ)EBC6527439 035 $a(Au-PeEL)EBL6527439 035 $a(OCoLC)1244620279 035 $a(PPN)254726739 035 $a(EXLCZ)994100000011807337 100 $a20211016d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTouch-based human-machine interaction $eprinciples and applications /$fShuo Gao [and three others] 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dĐ2021 215 $a1 online resource (244 pages) 311 $a3-030-68947-6 327 $aIntro -- Contents -- Chapter 1: Ambient Touch Interactivities -- References -- Chapter 2: Properties of Touch Events -- 2.1 Fingerīs Physical Properties -- 2.1.1 Physical Characteristics of Human Fingers and Touch Events -- 2.1.2 Characterization of Touch Events -- 2.2 Userīs Touch Behavior -- 2.2.1 Dynamic Force Touch Behavior -- 2.2.2 Static Force Touch Behavior -- 2.2.2.1 Instable Force Amplitudes Induced by Inevitable Finger Movement -- 2.2.2.2 Force Hysteresis Phenomenon -- References -- Chapter 3: Touch Detection Technologies -- 3.1 Contact-Based Touch Detection Techniques -- 3.1.1 Resistive-Based Techniques -- 3.1.1.1 Working Principle -- Four-Wire Structure -- Calculation of the Y Coordinate -- Calculation of the X Coordinate -- Five-Wire Construction -- Calculation of the Y Coordinate -- Calculation of the X Coordinate -- 3.1.1.2 Resistive Touch-Sensing System -- 3.1.1.3 Pros and Cons -- 3.1.2 Capacitive-Based Techniques -- 3.1.2.1 Surface Capacitance Touch Panel -- 3.1.2.2 Projected Capacitance Touch Panel -- Self-Capacitive Architecture -- Mutual-Capacitive Architecture -- Projected Capacitive Touch Panel Construction -- 3.1.2.3 Characteristics of Capacitive Touch Signals -- 3.1.3 Acoustic-Based Techniques -- 3.1.3.1 Active Acoustic Techniques -- Surface Acoustic Wave (SAW) -- Finger Reflection-Based Acoustic Touch Panel -- Bezel-Less Acoustic Touch Panel -- 3.1.3.2 Passive Acoustic Techniques -- Acoustic Pulse Recognition -- Dispersive Signal Technology -- 3.1.3.3 Pros and Cons -- 3.1.4 Optical-Based Techniques -- 3.1.4.1 Brief History and Current Status -- 3.1.4.2 Infrared Touch Sensing -- Working Principle -- Pros and Cons -- 3.1.4.3 Digital Waveguide Touch -- Working Principle -- Pros and Cons -- 3.1.4.4 Camera (CCD/CMOS)-Based Optical Touch Sensing -- Working Principle -- Pros and Cons. 327 $a3.1.4.5 Frustrated Total Internal Reflection -- Working Principle -- Pros and Cons -- 3.1.4.6 Diffused Illumination -- Working Principle -- Pros and Cons -- 3.1.4.7 Laser Light Plane -- Working Principle -- Pros and Cons -- 3.1.4.8 LED Light Plane -- Working Principle -- Pros and Cons -- 3.1.4.9 Conclusions -- 3.1.5 Piezoelectric-Based Techniques -- 3.1.5.1 A Brief History of Piezoelectric Touch Panel -- 3.1.5.2 Working Principle -- 3.1.5.3 Typical Architecture -- 3.1.5.4 Typical Readout Circuit and System Construction -- 3.1.5.5 Pros and Cons -- 3.1.5.6 Commercial Products -- 3.1.5.7 Recent Research Advances -- 3.1.6 Piezoresistive-Based Techniques -- 3.1.6.1 Working Principle -- 3.1.6.2 Typical Architecture -- 3.1.6.3 Pros and Cons -- 3.1.7 Pyroelectric-Based Techniques -- 3.1.7.1 Working Principle -- 3.1.7.2 Relevant Studies -- 3.1.7.3 Pros and Cons -- 3.1.8 Triboelectric-Based Techniques -- 3.1.8.1 Working Principle -- Dielectric-to-Dielectric Case -- Metal-to-Dielectric Case -- 3.1.8.2 State-of-the-Art Work -- 3.1.8.3 Pros and Cons -- 3.2 Non-contact Techniques -- 3.2.1 Camera-Based Techniques -- 3.2.2 Inertial Motion Unit-Based Techniques -- 3.2.3 Electromyogram-Based Detection Techniques -- 3.2.4 Electrical Capacitance Tomography-Based Techniques -- 3.2.4.1 Working Principle -- 3.2.4.2 LBP Algorithm -- 3.2.4.3 Landweber Iterative Algorithm -- 3.2.4.4 Sensor Structure and Stimulation Method -- Structures of 2D ECT Touch Panels -- Structures of 3D ECT Touch Panels -- 3.2.4.5 System Construction -- 3.2.4.6 Pros and Cons -- 3.2.5 Electrical Impedance Tomography-Based Techniques -- References -- Chapter 4: Haptic Feedback -- 4.1 A Brief Introduction of Feedback Technology -- 4.1.1 Feedback Technology in HMI Systems -- 4.1.2 Limitations of Conventional Visual and Auditory Feedback -- 4.2 Haptic Feedback Technology -- 4.2.1 Vibration Technology. 327 $a4.2.1.1 Inertial Actuator -- Eccentric Rotating Mass -- Working Principle -- Pros and Cons -- Linear Resonant Actuators -- Working Principle -- Pros and Cons -- Piezoelectric Actuator -- Working Principle -- Pros and Cons -- Surface Actuator -- Working Principle -- Pros and Cons -- Electroactive Polymer (EAP) Actuator -- Working Principle -- Pros and Cons -- Capacitive Electrosensory Interface -- Working Principle -- Pros and Cons -- 4.2.2 Bioelectrical Stimulation Technique -- 4.2.2.1 Functional Electrical Stimulation -- Working Principle -- Pros and Cons -- 4.2.2.2 Electrical Muscle Stimulation -- Working Principle -- Pros and Cons -- References -- Chapter 5: Performance Optimization -- 5.1 Capacitive TSP for 2D Detection -- 5.1.1 Noise Reduction -- 5.1.2 Noise Source -- 5.1.2.1 Main Noise Source in TSP -- 5.1.2.2 Noise from Display Panel -- 5.1.3 Solution for Noise Reduction -- 5.1.3.1 Circuitry-Based Techniques -- 5.1.3.2 Algorithm-Based Techniques -- 5.1.3.3 Pixel Level-Based Noise Reduction Techniques -- 5.1.3.4 Frame Level-Based Noise Reduction Techniques -- 5.1.4 Techniques for Fast Readout Speed and Low Power Consumption -- 5.1.5 Time and Frequency Domain -- 5.1.6 Spatial Domain -- 5.1.7 Conclusion -- 5.2 Piezoelectric TSP for 3D Force Touch Detection -- 5.2.1 Touch Event-Related Instable Responsivity Issues -- 5.2.1.1 Contact Area and Touch Direction -- 5.2.1.2 Touch Speed -- 5.2.2 Touch Panelīs Mechanical Property-Induced Low Force Detection Accuracy -- 5.2.2.1 Boundary Condition -- 5.2.2.2 Preload Effect -- 5.2.2.3 Interference from Adjacent Force Touches -- 5.2.3 Conclusion -- References -- Chapter 6: User Experience Evaluation -- 6.1 The Definition of User Experience -- 6.1.1 The Importance of User Experience Evaluation -- 6.2 The Development of User Experience Evaluation -- 6.2.1 From Behavior to Perception. 327 $a6.2.2 Immersive Assessment -- 6.2.3 Studies for Special Design -- 6.3 Evaluation Methods -- 6.3.1 Usability Test -- 6.3.1.1 Screen-Based Interaction -- 6.3.1.2 No Screen-Based Interaction -- 6.3.2 Behavioral Observation -- 6.3.3 Behavioral Measures -- 6.3.3.1 Eye Tracking -- 6.3.3.2 Facial Expression -- 6.3.3.3 Physiological Measures -- 6.3.4 Physiological Signals -- 6.3.4.1 Electromyography -- 6.3.4.2 Electrodermal Activity and Galvanic Skin Response -- 6.3.4.3 Cardiovascular Measures -- 6.3.4.4 Electroencephalography -- 6.3.5 Affective Index -- 6.3.5.1 Cognitive Load -- 6.3.5.2 Attention -- 6.3.5.3 Stress -- 6.3.5.4 Engagement -- 6.3.6 Survey and Questionnaires -- 6.3.6.1 Questionnaires -- Demographic Questionnaire -- Likert Scale -- 6.3.6.2 User Experience Questionnaire -- 6.3.6.3 Presence Questionnaire -- 6.3.6.4 NASA TLX -- 6.3.6.5 Interview and Qualitative Observation -- References -- Chapter 7: Emerging Applications -- 7.1 Interactivity for Flexible Displays -- 7.1.1 Materials for Flexible Touch Panels -- 7.1.1.1 Flexible Electrode -- Carbon Conductors -- Metal Conductors -- Polymeric Conductors -- Ionic Conductors -- 7.1.1.2 Flexible Dielectric -- 7.1.1.3 Flexible Substrate and Cover -- 7.1.2 Flexible Touch-Sensing Techniques -- 7.1.2.1 Flexible Capacitive Touch Panels -- 7.1.2.2 Flexible Piezoelectric Touch Panels -- 7.1.2.3 Flexible Piezoresistive and Resistive Touch Panels -- 7.1.2.4 Flexible Triboelectric Touch Panels -- 7.1.2.5 Flexible Ion Touch Panels -- 7.1.3 Commercial Products Used in Interactive Displays -- 7.2 Usage in Extreme Conditions -- 7.2.1 Water -- 7.2.2 Vibration -- 7.2.3 Extreme Temperatures -- 7.2.4 Sunlight -- 7.3 Interactivity with Virtual Reality -- 7.3.1 The System Composition of VR -- 7.3.2 Applications of VR Devices -- 7.3.2.1 Data Visualization and Interactions -- 7.3.2.2 Training -- 7.3.2.3 E-Commerce. 327 $a7.3.2.4 Education -- 7.3.2.5 Entertainment -- 7.4 Touch and Speech Combined Interactivity -- 7.4.1 Characteristics of Touch and Speech Interactions -- 7.4.2 Enabling Accurate and Efficient Input -- 7.4.3 Accommodating a Wide Range of Users and More Conditions -- 7.4.4 New Applications -- 7.5 Emotion Detection -- 7.6 Big-Data-Enabled Cyber Security -- References -- Chapter 8: Conclusion -- Index. 606 $aHuman-machine systems$xManual control 606 $aTouch screens 606 $aHaptic devices 615 0$aHuman-machine systems$xManual control. 615 0$aTouch screens. 615 0$aHaptic devices. 676 $a620.8 700 $aGao$b Shuo$0849100 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484741303321 996 $aTouch-based human-machine interaction$91896429 997 $aUNINA