LEADER 01276nam0 2200301 i 450 001 VAN0061706 005 20221128044838.714 010 $a88-7689-013-0 100 $a20071018d1987 |0itac50 ba 101 $aeng 102 $aIT 105 $a|||| ||||| 200 1 $aˆThe ‰cult images of imperial Rome$fCornelius Vermeule 210 $aRoma$cG. Bretschneider$d1987 215 $a91 p., [22] c. di tav.$cill.$d25 cm. 410 1$1001VAN0035276$12001 $aArchaeologica$1210 $aRoma$cL'erma di Bretschneider.$v71 606 $aImmagini sacre$xRoma antica$xSec. 1.-3.$3VANC032391$2LB 620 $dRoma$3VANL000360 676 $a704.9489207$v21 700 1$aVermeule$bCornelius C.$3VANV045103$0594160 712 $aBretschneider$3VANV111251$4650 801 $aIT$bSOL$c20221202$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/The cult images of imperial Rome.pdf$zThe cult images of imperial Rome.pdf 899 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$1IT-CE0103$2VAN07 912 $aVAN0061706 950 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$d07CONS A Archeologia $e07 10228 71 20071018 996 $aCult images of imperial Rome$91415533 997 $aUNISOB LEADER 03633nam 22005895 450 001 9910484635103321 005 20250609110706.0 010 $a3-658-09275-0 024 7 $a10.1007/978-3-658-09275-7 035 $a(CKB)3710000000378035 035 $a(EBL)2094662 035 $a(SSID)ssj0001465769 035 $a(PQKBManifestationID)11917437 035 $a(PQKBTitleCode)TC0001465769 035 $a(PQKBWorkID)11479716 035 $a(PQKB)11329139 035 $a(DE-He213)978-3-658-09275-7 035 $a(MiAaPQ)EBC2094662 035 $a(PPN)184890101 035 $a(MiAaPQ)EBC3108634 035 $a(EXLCZ)993710000000378035 100 $a20150318d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Unattainable Attempt to Avoid the Casus Irreducibilis for Cubic Equations $eGerolamo Cardano's De Regula Aliza /$fby Sara Confalonieri 205 $a1st ed. 2015. 210 1$aWiesbaden :$cSpringer Fachmedien Wiesbaden :$cImprint: Springer Spektrum,$d2015. 215 $a1 online resource (458 p.) 300 $a"Research"--Cover. 311 08$a3-658-09274-2 320 $aIncludes bibliographical references. 327 $aInter-Dependencies Between the Families of Cubic Equations in the Ars Magna -- Ars Magna, Chapters XI-XXIII and the Casus Irreducibilis -- Getting Acquainted with the De Regula Aliza -- The Method of the Splittings in Aliza, Chapter I. 330 $aSara Confalonieri presents an overview of Cardano?s mathematical treatises and, in particular, discusses the writings that deal with cubic equations. The author gives an insight into the latest of Cardano?s algebraic works, the De Regula Aliza (1570), which displays the attempts to overcome the difficulties entailed by the casus irreducibilis. Notably some of Cardano's strategies in this treatise are thoroughly analyzed. Far from offering an ultimate account of De Regula Aliza, by one of the most outstanding scholars of the 16th century, the present work is a first step towards a better understanding. Contents Inter-Dependencies Between the Families of Cubic Equations in the Ars Magna  Ars Magna, Chapters XI-XXIII and the Casus Irreducibilis Getting Acquainted with the De Regula Aliza The Method of the Splittings in Aliza, Chapter I Target Groups  Academics, researcher and students in the fields of mathematics, the history of mathematics, and epistemology. The Author Sara Confalonieri graduated in Philosophy at the Università degli Studi di Milano, in Mathematics at the Université Paris 6, and in Epistemology at the Université Paris 7, where she also obtained the PhD degree in history of mathematics on cubic equations during the Renaissance. At present, she takes part in a project on history of the didactic of mathematics in the 18th century at the Bergische Universität in Wuppertal as a post-doctoral researcher. 606 $aKnowledge, Theory of 606 $aAlgebra 606 $aEpistemology$3https://scigraph.springernature.com/ontologies/product-market-codes/E13000 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 615 0$aKnowledge, Theory of. 615 0$aAlgebra. 615 14$aEpistemology. 615 24$aAlgebra. 676 $a10 676 $a120 676 $a512 700 $aConfalonieri$b Sara$4aut$4http://id.loc.gov/vocabulary/relators/aut$01127490 906 $aBOOK 912 $a9910484635103321 996 $aThe Unattainable Attempt to Avoid the Casus Irreducibilis for Cubic Equations$92852030 997 $aUNINA