LEADER 03802nam 2200649 450 001 9910484531403321 005 20220228143043.0 010 $a3-540-76892-0 024 7 $a10.1007/978-3-540-76892-0 035 $a(CKB)1000000000437241 035 $a(SSID)ssj0000319814 035 $a(PQKBManifestationID)11250191 035 $a(PQKBTitleCode)TC0000319814 035 $a(PQKBWorkID)10338605 035 $a(PQKB)11206332 035 $a(DE-He213)978-3-540-76892-0 035 $a(MiAaPQ)EBC3063033 035 $a(MiAaPQ)EBC6853492 035 $a(Au-PeEL)EBL6853492 035 $a(PPN)123743095 035 $a(EXLCZ)991000000000437241 100 $a20220228d2008 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aRepresentation theory and complex analysis $electures given at the C.I.M.E. summer school held in Venice, Italy, June 10-17, 2004 /$fMichael Cowling [and five others.] ; editors, Enrico Casadio Tarabusi, Andrea D' Agnolo, Massimo Picardello 205 $a1st ed. 2008. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[2008] 210 4$dİ2008 215 $a1 online resource (XII, 389 p.) 225 1 $aC.I.M.E. Foundation Subseries ;$v1931 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-76891-2 320 $aIncludes bibliographical references and index. 327 $aApplications of Representation Theory to Harmonic Analysis of Lie Groups (and Vice Versa) -- Ramifications of the Geometric Langlands Program -- Equivariant Derived Category and Representation of Real Semisimple Lie Groups -- Amenability and Margulis Super-Rigidity -- Unitary Representations and Complex Analysis -- Quantum Computing and Entanglement for Mathematicians. 330 $aSix leading experts lecture on a wide spectrum of recent results on the subject of the title, providing both a solid reference and deep insights on current research activity. Michael Cowling presents a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces. Alain Valette recalls the concept of amenability and shows how it is used in the proof of rigidity results for lattices of semisimple Lie groups. Edward Frenkel describes the geometric Langlands correspondence for complex algebraic curves, concentrating on the ramified case where a finite number of regular singular points is allowed. Masaki Kashiwara studies the relationship between the representation theory of real semisimple Lie groups and the geometry of the flag manifolds associated with the corresponding complex algebraic groups. David Vogan deals with the problem of getting unitary representations out of those arising from complex analysis, such as minimal globalizations realized on Dolbeault cohomology with compact support. Nolan Wallach illustrates how representation theory is related to quantum computing, focusing on the study of qubit entanglement. 410 0$aC.I.M.E. Foundation Subseries ;$v1931 606 $aRepresentations of groups$vCongresses 606 $aHarmonic analysis$vCongresses 615 0$aRepresentations of groups 615 0$aHarmonic analysis 676 $a515.9 700 $aCowling$b M$g(Michael),$f1949-$066478 702 $aD' Agnolo$b Andrea 702 $aPicardello$b Massimo A.$f1949- 702 $aTarabusi$b Enrico Casadio 712 02$aCentro internazionale matematico estivo. 712 12$aC.I.M.E. Session "Representation Theory and Complex Analysis" 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484531403321 996 $aRepresentation theory and complex analysis$9230630 997 $aUNINA