LEADER 01078nam0-22003491i-450- 001 990000477690403321 005 20080514155339.0 010 $a0-471-44626-2 035 $a000047769 035 $aFED01000047769 035 $a(Aleph)000047769FED01 035 $a000047769 100 $a20020821d1970----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $aa-------001yy 200 1 $aContinuos univariate distributions$edistributions in statistics$fNorman L. Johnson, Samuel Kotz 210 $aNew York$cWiley & Sons$d©1970 215 $av.$cill.$d24 cm 225 1 $aWiley series in probability and mathematical statistics 610 0 $aDistribuzione (Teoria della probabilità) 676 $a519.1 700 1$aJohnson,$bNorman Lloyd$f<1917-2004>$012699 701 1$aKotz,$bSamuel$012052 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000477690403321 952 $a10 B II 440$b1226$fDINEL 952 $a10 B II 441$b1227$fDINEL 959 $aDINEL 996 $aContinuos univariate distributions$9332130 997 $aUNINA LEADER 04091nam 2200577 a 450 001 9910484526903321 005 20200520144314.0 010 $a9783540769569 010 $a3540769560 024 7 $a10.1007/978-3-540-76956-9 035 $a(CKB)1000000000438279 035 $a(SSID)ssj0000318835 035 $a(PQKBManifestationID)11265702 035 $a(PQKBTitleCode)TC0000318835 035 $a(PQKBWorkID)10336284 035 $a(PQKB)10622625 035 $a(DE-He213)978-3-540-76956-9 035 $a(MiAaPQ)EBC3068724 035 $a(PPN)127048685 035 $a(EXLCZ)991000000000438279 100 $a20080122d2008 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMathematical theory of Feynman path integrals $ean introduction /$fSergio A. Albeverio, Raphael J. Hegh-Krohn, Sonia Mazzucchi 205 $a2nd corr. and enl. ed. 210 $aBerlin $cSpringer$dc2008 215 $a1 online resource (X, 182 p.) 225 1 $aLecture notes in mathematics,$x0075-8434 ;$v523 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540769545 311 08$a3540769544 320 $aIncludes bibliographical references (p. [141]-171) and index. 327 $aPreface to the second edition -- Preface to the first edition -- 1.Introduction -- 2.The Fresnel Integral of Functions on a Separable Real Hilbert Spa -- 3.The Feynman Path Integral in Potential Scattering -- 4.The Fresnel Integral Relative to a Non-singular Quadratic Form -- 5.Feynman Path Integrals for the Anharmonic Oscillator -- 6.Expectations with Respect to the Ground State of the Harmonic Oscillator -- 7.Expectations with Respect to the Gibbs State of the Harmonic Oscillator -- 8.The Invariant Quasi-free States -- 9.The Feynman Hystory Integral for the Relativistic Quantum Boson Field -- 10.Some Recent Developments -- 10.1.The infinite dimensional oscillatory integral -- 10.2.Feynman path integrals for polynomially growing potentials -- 10.3.The semiclassical expansio -- 10.4.Alternative approaches to Feynman path integrals -- 10.4.1.Analytic continuation -- 10.4.2.White noise calculus -- 10.5.Recent applications -- 10.5.1.The Schroedinger equation with magnetic fields -- 10.5.2.The Schroedinger equation with time dependent potentials -- 10.5.3 .hase space Feynman path integrals -- 10.5.4.The stochastic Schroedinger equation -- 10.5.5.The Chern-Simons functional integral -- References of the first edition -- References of the second edition -- Analytic index -- List of Notations. 330 $aFeynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low-dimensional topology and differential geometry, algebraic geometry, infinite-dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v523. 606 $aFeynman integrals 615 0$aFeynman integrals. 676 $a515.43 700 $aAlbeverio$b Sergio$044256 701 $aHoegh-Krohn$b Raphael$0334661 701 $aMazzucchi$b Sonia$0508832 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484526903321 996 $aMathematical Theory of Feynman Path Integrals$9774394 997 $aUNINA LEADER 01214cam a2200265 4500 001 991003262939707536 005 20250430130201.0 008 950721s1551 it b 000 0 ita d 035 $ab14305331-39ule_inst 035 $aCICOGNARA-2014-0203$9ExL 040 $aBibl. Interfacoltà T. Pellegrino$bita 100 1 $aTheriaca, Vespasiano$0718151 245 10$aDiscorso et ragionamento di L'ombre$cdi M. Vespasiano Theríaca. 260 $aRomae,$bapud Antonium Bladum,$c1551. 300 $a[23] p.; $c21 cm. 500 $aInsegna tipogr. sul front. 500 $aRiproduzione in microfiche dell'originale conservato presso la Biblioteca Apostolica Vaticana 787 18$iLeopoldo Cicognara Program :$tBiblioteca Cicognara$h[microform] : literary sources in the history of art and kindred subjects 787 18$tCatalogo ragionato dei libri d'arte e d'antichità / Leopoldo Cicognara 907 $a.b14305331$b01-04-22$c28-07-16 912 $a991003262939707536 945 $aLE002 SB Raccolta Cicognara, mcrf 865$g0$lle002$pE0.00$rn$so $t11$u0$v0$w0$x0$y.i15776888$z28-07-16 996 $aDiscorso et ragionamento di L'ombre$91392279 997 $aUNISALENTO 998 $ale002$b28-07-16$cm$dg $e-$fita$git $h0$i1