LEADER 03680nam 22006375 450 001 9910484493703321 005 20250609110046.0 010 $a3-030-47091-1 024 7 $a10.1007/978-3-030-47091-3 035 $a(CKB)4100000011363842 035 $a(DE-He213)978-3-030-47091-3 035 $a(MiAaPQ)EBC6274515 035 $a(PPN)269149996 035 $a(MiAaPQ)EBC6272574 035 $a(EXLCZ)994100000011363842 100 $a20200729d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSynchronization in Infinite-Dimensional Deterministic and Stochastic Systems /$fby Igor Chueshov, Björn Schmalfuß 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XIX, 329 p.) 225 1 $aApplied Mathematical Sciences,$x0066-5452 ;$v204 311 08$a3-030-47090-3 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Part I: Deterministic Systems -- Synchronization of global attractors and individual trajectories -- Master-slave synchronization via invariant manifolds -- Part II: Stochastic Systems -- Stochastic Synchronization of Random Pullback Attractors -- Master-slave synchronization in random systems. 330 $aThe main goal of this book is to systematically address the mathematical methods that are applied in the study of synchronization of infinite-dimensional evolutionary dissipative or partially dissipative systems. It bases its unique monograph presentation on both general and abstract models and covers several important classes of coupled nonlinear deterministic and stochastic PDEs which generate infinite-dimensional dissipative systems. This text, which adapts readily to advanced graduate coursework in dissipative dynamics, requires some background knowledge in evolutionary equations and introductory functional analysis as well as a basic understanding of PDEs and the theory of random processes. Suitable for researchers in synchronization theory, the book is also relevant to physicists and engineers interested in both the mathematical background and the methods for the asymptotic analysis of coupled infinite-dimensional dissipative systems that arise in continuum mechanics. 410 0$aApplied Mathematical Sciences,$x0066-5452 ;$v204 606 $aDynamics 606 $aErgodic theory 606 $aStatistical physics 606 $aSystem theory 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aApplications of Nonlinear Dynamics and Chaos Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P33020 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/M13090 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aStatistical physics. 615 0$aSystem theory. 615 14$aDynamical Systems and Ergodic Theory. 615 24$aApplications of Nonlinear Dynamics and Chaos Theory. 615 24$aComplex Systems. 676 $a003.76015118 676 $a519.22 700 $aChueshov$b Igor$4aut$4http://id.loc.gov/vocabulary/relators/aut$066734 702 $aSchmalfuß$b Björn$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484493703321 996 $aSynchronization in Infinite-Dimensional Deterministic and Stochastic Systems$92391163 997 $aUNINA